Browse Source

day 8, yes day 7 was skipped, its annoying lol

main
xenua 2 years ago
parent
commit
ca01fb7875
Signed by: xenua
GPG Key ID: 6A0C04FA9A7D7582
  1. 45
      7.py
  2. 101
      8.py
  3. 1087
      inputs/7
  4. 99
      inputs/8
  5. 76
      prompts/8

45
7.py

@ -0,0 +1,45 @@
import string
import aoclib
from pathlib import PurePath
inp = aoclib.get_input(7, parser=aoclib.parse_lines)
class FileSystem:
def __init__(self, shell_log: list[str]):
fs = {"/": {}}
cwd = PurePath()
for line in shell_log:
if line.startswith("$"):
_, cmd = line.split(" ", maxsplit=1)
if cmd.startswith("cd"):
_, to = cmd.split(" ")
if to == "..":
cwd = cwd.parent
else:
cwd /= to
else: # is ls output
if line.startswith("dir"):
_, dirname = line.split(" ")
else:
size, name = line.split(" ")
def part1():
total = 0
for line in inp:
if line[0] in string.digits:
size, _ = line.split(" ")
total += int(size)
return "haha fuck this day, im not doing it"
def part2():
...
aoclib.main(part1, part2)

101
8.py

@ -0,0 +1,101 @@
import aoclib
inp = aoclib.get_input(8, parser=aoclib.parse_lines_with_func(lambda line: [int(c) for c in line]))
class Forest:
class Directions:
UP = (-1, 0)
DOWN = (1, 0)
LEFT = (0, -1)
RIGHT = (0, 1)
ALL = (UP, DOWN, LEFT, RIGHT)
def __init__(self, grid): # assumes rect grid
self.grid = grid
self.max = (len(grid[0]), len(grid))
def is_tree_visible(self, x: int, y: int):
return any([self._tree_visible_from(direction, x, y) for direction in self.Directions.ALL])
def _tree_visible_from(self, direction, x, y):
main = self._get_tree(x, y)
others = self._get_all_trees_in_dir(direction, x, y)
return all([o < main for o in others])
def _get_all_trees_in_dir(self, direction, x, y):
trees = []
dx, dy = direction
while True:
x += dx
y += dy
tree = self._get_tree(x, y)
if tree is not None:
trees.append(tree)
else:
return trees
def scenic_score_for_pos(self, x, y):
prod = 1
for d in self.Directions.ALL:
prod *= self._get_scenic_score_in_dir(d, x, y)
if prod == 0:
break
return prod
def _get_scenic_score_in_dir(self, direction, x, y):
house = self._get_tree(x, y)
count = 0
for tree in self._get_trees_in_dir_iter(direction, x, y):
count += 1
if tree >= house:
break
return count
def _get_trees_in_dir_iter(self, direction, x, y):
dx, dy = direction
while True:
x += dx
y += dy
tree = self._get_tree(x, y)
if tree is not None:
yield tree
else:
break
def _get_tree(self, x, y):
if x < 0 or y < 0:
return None
try:
return self.grid[y][x]
except IndexError:
return None
def part1():
f = Forest(inp)
xmax, ymax = f.max
count = 0
for x in range(xmax):
for y in range(ymax):
if f.is_tree_visible(x, y):
count += 1
return count
def part2():
f = Forest(inp)
xmax, ymax = f.max
highest = 0
for x in range(xmax):
for y in range(ymax):
if (current := f.scenic_score_for_pos(x, y)) > highest:
highest = current
return highest
aoclib.main(part1, part2)

1087
inputs/7

File diff suppressed because it is too large Load Diff

99
inputs/8

@ -0,0 +1,99 @@
002220021312231312222033343421330303240001434141231331323404031022114013434333010230221020221020022
121122120202012020121043013102221221435521112422443242343123513341010302410221342010223030013102200
000102113102200232304033323331230042243225545423222145155353323244444103030341114102200110230210210
210000210011313230124421403131035424212553341224354235111554525424232312243334330011232213102110221
011221213013233101202214421014211444113354135545433143234341354155455431402040121341332111001213200
102011200323032042010300400433425523314114545134123354514144125244221425322110331241203233303212321
102333112233124011310312033433351241332441511153434514142551252434413454525133430430232301313012101
211211123303442031043123115213455152541435522242266645543311341343514541312331003041323121132333230
001321210013322412003145152352533215251266535255436246225646232235155455213434510131104234003003222
223300223021202423423443531414132551356424245326334266655533565213421321535315422410221142133031312
222100212043241001125454253523452134533223365232264243252423323432612224141255512031323011313003103
021121103403121443434132421553436423352664246453242666446362544432226535142445142544021324240001211
133332012412432333133345415214366446545565543462332546664335363355632655443241344522421402100130202
203311422144324333445534552346564665545464453356346434642563543262655253451122554135410444243311311
322001144142332343512222522324564232262466666644733543366455434326365635422423142542532442322034233
101313214102402432135211163436536554325523756753777636774442234646434532462532323552412110323232323
001234101142053124341452526452436566623744636336343435367647546635623353553555534224231314214100212
011340142113121313424442565642324364776443464557637463364534454646665424552553413532212514302012341
131222200221422152343654426266433667545366347373774775466374344436764353332356464535514434324340110
111003023342553555436244262523625335453474533637454347543437747544744452225334642442335223143444444
321342121452254343244365542366665534457746575473573344454777777733474472444242626215251353540020101
112143303315213335256234665554477437377636773577545734476555474364535534426563254464121321342443010
234221035235112225663223532437466537576546445657685585555367446553357466742263556432335535233141333
222423221324421313653564633554665443633556667677566864675574576677657463472426635262534215124024221
324331152222354262443463537535377475436657674545875474876844577557734435563264343363652233415524410
213342122353141336533663276453775344477647556654774756865757686866756357447742256452564542442334022
031310253121515643256663543343774374464475868668856447745665786466775333667666543356266334544230111
003414153141543253444633475333643566678746567545465484644456865746567655663777455623456224131310102
330142523253452632255556734446376546656754857454455688868674648457646443377555553462454615251453442
133235545322333532564577755447648846778644645755887995696448544647577553657663736532335515233432204
334335524535365552354756376746487575645445659755695765666787544578886583475443775453346362431143131
341031551123323343266454736348684858484889599858696567585876875856777548475375347666344435552535130
330124132352653624374474564584845574667585775689557998777788587447485878554574675446242255332135430
022332341314322336445375435566746866478875855558865695755978785575785875787557756366564323334355421
422512114322233253336344454648844756687768565958568995898568666686676864785573463376463556254314532
103452142442634255644464378667858765668577695986766569979865855566666464448666555466453356541352555
241112442533463566644466384475785778588865998998987687878685758585665474766754566466245444341351111
242331514626445247647536577786867686956757887867997868868565789798577586688475374636425346525131421
243314253655642337357775774485658855797598667666899989967796597576898668686444477753324232232351154
141212322533446654653434488448555885596757899977797669696788657787555457687585673655426445422433424
342122455562335353366637887665858986966688896796677969888697689675958786488564747444335354224244114
312551335256534266765767457478789957996778878677968997797796765897866875565887677747646635544512542
211534134626623545346577744877677876857796986969678796966776968959655984565744445456734645346232512
032231543234465677337374577887787968857667678778778977789989896785756795858858774466662336446214512
324534154425536743565446458446858967886787686879898778778766688758858698485648874353672463266531234
435134112333555443375367474578758968688997879997977798878668997879689696565868444476554256336155424
415141242653322635673376487876767958867777897899878989988966688858578595645554834563765634653311443
333153263566332363556565647675776889997977998798979989789779878767599668677764763567736353533453222
324533443324323546474686475757577689889799697979879899988679887776859589545565675357363456543514214
541212526226223464775746748666766598968767978778799799798889796767886998655687843577354334262542222
254152122622335364377555764858997897878877898777778878987979889696555579776547754776646635325242443
233322465646563366564454647465965779689999699998999997777987688766899995784766835357675264423235125
535451544662624547343458788846585555988689797879987987777878766896757589544864553377356554234332115
244155565332636373565485774649696779997697667779778999898989987886985757674786675646374345632323155
541445123454425766545765876866698666699986888787877988888968997758669898748856774455664363534535245
455333345362435745575658765456987788888989966788777799798897779657686755844678835677774462453432523
221534413542463536734757867768888675877686879688897878998879669688977768885557754643352225526224333
221234516433463336765777686785786979666796878779797869789769666688997978844648636667643543232444133
332215426646234434537648668445869988799778678686878967687668768657879955656846347743656535222133422
031553553463354667655574475474488786777686996886779777887886867775767548458866434657666522253512145
331532316364356445453744448764666787785586687678778969697798769655779847465578374664546445324424334
231442532632664337564767657644566986698596889799897977969897769799988688455757473356424325365512353
411553532344436334565736755688777565758689667688779789696666578858657666568855774576363253255223545
142243141626243333657765468644745995798775976978979869767759758699574774455763666347225335254143154
434542532345526233743743645456757487695765886898969876785665857797756868557564677455336336551245453
242111213336234342634744347655654759597665895975786988997859879785674785466364664476642426523334413
240432541545646555637655375878747648689956699797668787668987857785877748855353544573343263423351451
233353541126663465447637576756467765799985779857685597778958855944587564657567344425653566513324251
202133125415524635556354365368576748667886559966988689898777998784678575655573455765246634331111323
214241132111456463244677753468567888865459986568778556756857554488444844574373477643253433514113414
404043331523632565246656343354566578548867897777799576599855576486586885647776646654645643421251434
321431341441524644343774675764678486487885575766685789987548644455655465455574763334325643223532112
312044135522435234264466734356344664746887668755765684564685544655877565747654532452656321312254240
221443411432246553232444575537753577667488768677578665484847677754883754573376245624364553144524310
333011355143132662522563635437666768647485448557477746476767655566765543476573262345334242422532040
130221313353423632635345377635457345475858877766844478544578458753453567556654264564563111241221424
420000412311333223455353344535675346674758458678588744648777864536643447536366432335235213533510131
033211203422344216654546246576546347545346767685845774858574755653734736666352442234431433312122020
420112221555544554533234236234734667465467566545488844644654555366376734646542254343325451511102040
120131424153254535662246332535575674733567577374535555633745576736633645534235222461444514331311422
213413130454123421355422255452563464655444643735457443555675634373377635255435222352513552212031020
003020114244244432233353656455567667744454636765475774754663376447476625234623436352314413331402042
324044223442544345113455525643466577777675355766774773637445365463522332325642562435514442142404141
210441410124444533445153545634656623447563677736473335673574337754666335462353221213524122021303233
220001402334314112552325546465543662455673446333744466773363533553456364646542224332314211402042433
023121402021311422535432445424233646345224547753633435644474236362532444465321253221141144332413310
323020230034123314134444533446535564436335465334366443566523243354226225646253351453120014034104303
312321342442214055412542111145545344545643544554353232456465256462323445343525123442530123340220021
123101342024104423223521423214332556563335635536633462555625643665222463242344244522332431230422020
300202224124443140142225324453536234525546225346366434644466234244662333545341335424243412214111222
230103311300324320142422532144424144356464635656343323243433326662623345523535351332140310322302320
102213121041413130343312325141341341255366646363663225633336454234535134543235451400033131103312302
220010012323010223213414114534555442121353366562642344263362424334153543414344531223433101022121003
111303131132410340323210521254433532435211213444624335211322534254443353121223030123212013112122222
221300032203340322340214302442511523252243154411411131132224142542512334245223323243012130220310111
210202131021310312212042132343151311311552432124522351251323142332524114321412240003424203112223000
120001230322001230123443443202113524332314432515141344214224414354425231021342403441230201112313220
000101310102010302144343300032331251425155511533145124553435221424141440223210230440103301210001022
111021010130123300013234210112002104312354542225421421441334253132031032244142134422332001101011222

76
prompts/8

@ -0,0 +1,76 @@
--- Day 8: Treetop Tree House ---
The expedition comes across a peculiar patch of tall trees all planted carefully in a grid. The Elves explain that a previous expedition planted these trees as a reforestation effort. Now, they're curious if this would be a good location for a tree house.
First, determine whether there is enough tree cover here to keep a tree house hidden. To do this, you need to count the number of trees that are visible from outside the grid when looking directly along a row or column.
The Elves have already launched a quadcopter to generate a map with the height of each tree (your puzzle input). For example:
30373
25512
65332
33549
35390
Each tree is represented as a single digit whose value is its height, where 0 is the shortest and 9 is the tallest.
A tree is visible if all of the other trees between it and an edge of the grid are shorter than it. Only consider trees in the same row or column; that is, only look up, down, left, or right from any given tree.
All of the trees around the edge of the grid are visible - since they are already on the edge, there are no trees to block the view. In this example, that only leaves the interior nine trees to consider:
The top-left 5 is visible from the left and top. (It isn't visible from the right or bottom since other trees of height 5 are in the way.)
The top-middle 5 is visible from the top and right.
The top-right 1 is not visible from any direction; for it to be visible, there would need to only be trees of height 0 between it and an edge.
The left-middle 5 is visible, but only from the right.
The center 3 is not visible from any direction; for it to be visible, there would need to be only trees of at most height 2 between it and an edge.
The right-middle 3 is visible from the right.
In the bottom row, the middle 5 is visible, but the 3 and 4 are not.
With 16 trees visible on the edge and another 5 visible in the interior, a total of 21 trees are visible in this arrangement.
Consider your map; how many trees are visible from outside the grid?
Your puzzle answer was [full of wild kittens!].
--- Part Two ---
Content with the amount of tree cover available, the Elves just need to know the best spot to build their tree house: they would like to be able to see a lot of trees.
To measure the viewing distance from a given tree, look up, down, left, and right from that tree; stop if you reach an edge or at the first tree that is the same height or taller than the tree under consideration. (If a tree is right on the edge, at least one of its viewing distances will be zero.)
The Elves don't care about distant trees taller than those found by the rules above; the proposed tree house has large eaves to keep it dry, so they wouldn't be able to see higher than the tree house anyway.
In the example above, consider the middle 5 in the second row:
30373
25512
65332
33549
35390
Looking up, its view is not blocked; it can see 1 tree (of height 3).
Looking left, its view is blocked immediately; it can see only 1 tree (of height 5, right next to it).
Looking right, its view is not blocked; it can see 2 trees.
Looking down, its view is blocked eventually; it can see 2 trees (one of height 3, then the tree of height 5 that blocks its view).
A tree's scenic score is found by multiplying together its viewing distance in each of the four directions. For this tree, this is 4 (found by multiplying 1 * 1 * 2 * 2).
However, you can do even better: consider the tree of height 5 in the middle of the fourth row:
30373
25512
65332
33549
35390
Looking up, its view is blocked at 2 trees (by another tree with a height of 5).
Looking left, its view is not blocked; it can see 2 trees.
Looking down, its view is also not blocked; it can see 1 tree.
Looking right, its view is blocked at 2 trees (by a massive tree of height 9).
This tree's scenic score is 8 (2 * 2 * 1 * 2); this is the ideal spot for the tree house.
Consider each tree on your map. What is the highest scenic score possible for any tree?
Your puzzle answer was [actually fun this time].
Loading…
Cancel
Save