Browse Source

Merge pull request #21 from FenrirWolf/mutex

Add sync::mutex
pull/10/head
Ronald Kinard 8 years ago committed by GitHub
parent
commit
1c98cb543b
  1. 3
      ctr-std/Cargo.toml
  2. 3
      ctr-std/src/lib.rs
  3. 10
      ctr-std/src/sync/mod.rs
  4. 681
      ctr-std/src/sync/mutex.rs
  5. 1
      ctr-std/src/sys/unix/mod.rs
  6. 84
      ctr-std/src/sys/unix/mutex.rs
  7. 3
      ctr-std/src/sys_common/mod.rs
  8. 66
      ctr-std/src/sys_common/mutex.rs
  9. 199
      ctr-std/src/sys_common/poison.rs
  10. 236
      ctr-std/src/sys_common/remutex.rs
  11. 5
      ctr-std/src/thread/mod.rs

3
ctr-std/Cargo.toml

@ -9,6 +9,9 @@ git = "https://github.com/rust-lang-nursery/compiler-builtins"
[dependencies.ctr-libc] [dependencies.ctr-libc]
path = "../ctr-libc" path = "../ctr-libc"
[dependencies.ctru-sys]
path = "../ctru-sys"
[dependencies.alloc_system] [dependencies.alloc_system]
version = "0.1.1" version = "0.1.1"

3
ctr-std/src/lib.rs

@ -9,8 +9,10 @@
#![feature(compiler_builtins_lib)] #![feature(compiler_builtins_lib)]
#![feature(core_intrinsics)] #![feature(core_intrinsics)]
#![feature(char_escape_debug)] #![feature(char_escape_debug)]
#![feature(dropck_eyepatch)]
#![feature(float_extras)] #![feature(float_extras)]
#![feature(fused)] #![feature(fused)]
#![feature(generic_param_attrs)]
#![feature(int_error_internals)] #![feature(int_error_internals)]
#![feature(lang_items)] #![feature(lang_items)]
#![feature(macro_reexport)] #![feature(macro_reexport)]
@ -51,6 +53,7 @@ extern crate compiler_builtins;
// 3ds-specific dependencies // 3ds-specific dependencies
extern crate ctr_libc as libc; extern crate ctr_libc as libc;
extern crate ctru_sys as libctru;
// stealing spin's mutex implementation for now // stealing spin's mutex implementation for now
extern crate spin; extern crate spin;

10
ctr-std/src/sync/mod.rs

@ -21,9 +21,9 @@
pub use alloc::arc::{Arc, Weak}; pub use alloc::arc::{Arc, Weak};
#[stable(feature = "rust1", since = "1.0.0")] #[stable(feature = "rust1", since = "1.0.0")]
pub use core::sync::atomic; pub use core::sync::atomic;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::mutex::{Mutex, MutexGuard};
#[stable(feature = "rust1", since = "1.0.0")]
pub use sys_common::poison::{PoisonError, TryLockError, TryLockResult, LockResult};
// Easy cheat until we get proper locks based on libctru code mod mutex;
#[stable(feature = "3ds", since = "1.0.0")]
pub use spin::{Mutex, MutexGuard};
#[stable(feature = "3ds", since = "1.0.0")]
pub use spin::{RwLock, RwLockReadGuard, RwLockWriteGuard};

681
ctr-std/src/sync/mutex.rs

@ -0,0 +1,681 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cell::UnsafeCell;
use fmt;
use marker;
use mem;
use ops::{Deref, DerefMut};
use ptr;
use sys_common::mutex as sys;
use sys_common::poison::{self, TryLockError, TryLockResult, LockResult};
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// # Poisoning
///
/// The mutexes in this module implement a strategy called "poisoning" where a
/// mutex is considered poisoned whenever a thread panics while holding the
/// lock. Once a mutex is poisoned, all other threads are unable to access the
/// data by default as it is likely tainted (some invariant is not being
/// upheld).
///
/// For a mutex, this means that the `lock` and `try_lock` methods return a
/// `Result` which indicates whether a mutex has been poisoned or not. Most
/// usage of a mutex will simply `unwrap()` these results, propagating panics
/// among threads to ensure that a possibly invalid invariant is not witnessed.
///
/// A poisoned mutex, however, does not prevent all access to the underlying
/// data. The `PoisonError` type has an `into_inner` method which will return
/// the guard that would have otherwise been returned on a successful lock. This
/// allows access to the data, despite the lock being poisoned.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
/// let (data, tx) = (data.clone(), tx.clone());
/// thread::spawn(move || {
/// // The shared state can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// //
/// // We unwrap() the return value to assert that we are not expecting
/// // threads to ever fail while holding the lock.
/// let mut data = data.lock().unwrap();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To recover from a poisoned mutex:
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let lock = Arc::new(Mutex::new(0_u32));
/// let lock2 = lock.clone();
///
/// let _ = thread::spawn(move || -> () {
/// // This thread will acquire the mutex first, unwrapping the result of
/// // `lock` because the lock has not been poisoned.
/// let _guard = lock2.lock().unwrap();
///
/// // This panic while holding the lock (`_guard` is in scope) will poison
/// // the mutex.
/// panic!();
/// }).join();
///
/// // The lock is poisoned by this point, but the returned result can be
/// // pattern matched on to return the underlying guard on both branches.
/// let mut guard = match lock.lock() {
/// Ok(guard) => guard,
/// Err(poisoned) => poisoned.into_inner(),
/// };
///
/// *guard += 1;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Mutex<T: ?Sized> {
// Note that this mutex is in a *box*, not inlined into the struct itself.
// Once a native mutex has been used once, its address can never change (it
// can't be moved). This mutex type can be safely moved at any time, so to
// ensure that the native mutex is used correctly we box the inner lock to
// give it a constant address.
inner: Box<sys::Mutex>,
poison: poison::Flag,
data: UnsafeCell<T>,
}
// these are the only places where `T: Send` matters; all other
// functionality works fine on a single thread.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Send for Mutex<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> { }
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be access through this guard via its
/// `Deref` and `DerefMut` implementations.
///
/// This structure is created by the [`lock()`] and [`try_lock()`] methods on
/// [`Mutex`].
///
/// [`lock()`]: struct.Mutex.html#method.lock
/// [`try_lock()`]: struct.Mutex.html#method.try_lock
/// [`Mutex`]: struct.Mutex.html
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
// funny underscores due to how Deref/DerefMut currently work (they
// disregard field privacy).
__lock: &'a Mutex<T>,
__poison: poison::Guard,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> !marker::Send for MutexGuard<'a, T> {}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(t: T) -> Mutex<T> {
let mut m = Mutex {
inner: box sys::Mutex::new(),
poison: poison::Flag::new(),
data: UnsafeCell::new(t),
};
unsafe {
m.inner.init();
}
m
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the mutex
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = mutex.clone();
///
/// thread::spawn(move || {
/// *c_mutex.lock().unwrap() = 10;
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn lock(&self) -> LockResult<MutexGuard<T>> {
unsafe {
self.inner.lock();
MutexGuard::new(self)
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `Err` is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return failure if the mutex would otherwise be
/// acquired.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = mutex.clone();
///
/// thread::spawn(move || {
/// let mut lock = c_mutex.try_lock();
/// if let Ok(ref mut mutex) = lock {
/// **mutex = 10;
/// } else {
/// println!("try_lock failed");
/// }
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> {
unsafe {
if self.inner.try_lock() {
Ok(MutexGuard::new(self)?)
} else {
Err(TryLockError::WouldBlock)
}
}
}
/// Determines whether the lock is poisoned.
///
/// If another thread is active, the lock can still become poisoned at any
/// time. You should not trust a `false` value for program correctness
/// without additional synchronization.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = mutex.clone();
///
/// let _ = thread::spawn(move || {
/// let _lock = c_mutex.lock().unwrap();
/// panic!(); // the mutex gets poisoned
/// }).join();
/// assert_eq!(mutex.is_poisoned(), true);
/// ```
#[inline]
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn is_poisoned(&self) -> bool {
self.poison.get()
}
/// Consumes this mutex, returning the underlying data.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// assert_eq!(mutex.into_inner().unwrap(), 0);
/// ```
#[stable(feature = "mutex_into_inner", since = "1.6.0")]
pub fn into_inner(self) -> LockResult<T> where T: Sized {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock the inner lock.
//
// To get the inner value, we'd like to call `data.into_inner()`,
// but because `Mutex` impl-s `Drop`, we can't move out of it, so
// we'll have to destructure it manually instead.
unsafe {
// Like `let Mutex { inner, poison, data } = self`.
let (inner, poison, data) = {
let Mutex { ref inner, ref poison, ref data } = self;
(ptr::read(inner), ptr::read(poison), ptr::read(data))
};
mem::forget(self);
inner.destroy(); // Keep in sync with the `Drop` impl.
drop(inner);
poison::map_result(poison.borrow(), |_| data.into_inner())
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place---the mutable borrow statically guarantees no locks exist.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut().unwrap() = 10;
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "mutex_get_mut", since = "1.6.0")]
pub fn get_mut(&mut self) -> LockResult<&mut T> {
// We know statically that there are no other references to `self`, so
// there's no need to lock the inner lock.
let data = unsafe { &mut *self.data.get() };
poison::map_result(self.poison.borrow(), |_| data )
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Mutex<T> {
fn drop(&mut self) {
// This is actually safe b/c we know that there is no further usage of
// this mutex (it's up to the user to arrange for a mutex to get
// dropped, that's not our job)
//
// IMPORTANT: This code must be kept in sync with `Mutex::into_inner`.
unsafe { self.inner.destroy() }
}
}
#[stable(feature = "mutex_default", since = "1.9.0")]
impl<T: ?Sized + Default> Default for Mutex<T> {
/// Creates a `Mutex<T>`, with the `Default` value for T.
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Ok(guard) => write!(f, "Mutex {{ data: {:?} }}", &*guard),
Err(TryLockError::Poisoned(err)) => {
write!(f, "Mutex {{ data: Poisoned({:?}) }}", &**err.get_ref())
},
Err(TryLockError::WouldBlock) => write!(f, "Mutex {{ <locked> }}")
}
}
}
impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
poison::map_result(lock.poison.borrow(), |guard| {
MutexGuard {
__lock: lock,
__poison: guard,
}
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'mutex, T: ?Sized> Deref for MutexGuard<'mutex, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.__lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'mutex, T: ?Sized> DerefMut for MutexGuard<'mutex, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.__lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> Drop for MutexGuard<'a, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.__lock.poison.done(&self.__poison);
self.__lock.inner.unlock();
}
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("MutexGuard")
.field("lock", &self.__lock)
.finish()
}
}
pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
&guard.__lock.inner
}
pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
&guard.__lock.poison
}
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use sync::mpsc::channel;
use sync::{Arc, Mutex, Condvar};
use sync::atomic::{AtomicUsize, Ordering};
use thread;
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
unsafe impl<T: Send> Send for Packet<T> {}
unsafe impl<T> Sync for Packet<T> {}
#[test]
fn smoke() {
let m = Mutex::new(());
drop(m.lock().unwrap());
drop(m.lock().unwrap());
}
#[test]
fn lots_and_lots() {
const J: u32 = 1000;
const K: u32 = 3;
let m = Arc::new(Mutex::new(0));
fn inc(m: &Mutex<u32>) {
for _ in 0..J {
*m.lock().unwrap() += 1;
}
}
let (tx, rx) = channel();
for _ in 0..K {
let tx2 = tx.clone();
let m2 = m.clone();
thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
let tx2 = tx.clone();
let m2 = m.clone();
thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
}
drop(tx);
for _ in 0..2 * K {
rx.recv().unwrap();
}
assert_eq!(*m.lock().unwrap(), J * K * 2);
}
#[test]
fn try_lock() {
let m = Mutex::new(());
*m.try_lock().unwrap() = ();
}
#[test]
fn test_into_inner() {
let m = Mutex::new(NonCopy(10));
assert_eq!(m.into_inner().unwrap(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = Mutex::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner().unwrap();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_into_inner_poison() {
let m = Arc::new(Mutex::new(NonCopy(10)));
let m2 = m.clone();
let _ = thread::spawn(move || {
let _lock = m2.lock().unwrap();
panic!("test panic in inner thread to poison mutex");
}).join();
assert!(m.is_poisoned());
match Arc::try_unwrap(m).unwrap().into_inner() {
Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
}
}
#[test]
fn test_get_mut() {
let mut m = Mutex::new(NonCopy(10));
*m.get_mut().unwrap() = NonCopy(20);
assert_eq!(m.into_inner().unwrap(), NonCopy(20));
}
#[test]
fn test_get_mut_poison() {
let m = Arc::new(Mutex::new(NonCopy(10)));
let m2 = m.clone();
let _ = thread::spawn(move || {
let _lock = m2.lock().unwrap();
panic!("test panic in inner thread to poison mutex");
}).join();
assert!(m.is_poisoned());
match Arc::try_unwrap(m).unwrap().get_mut() {
Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
}
}
#[test]
fn test_mutex_arc_condvar() {
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move|| {
// wait until parent gets in
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
let mut lock = lock.lock().unwrap();
*lock = true;
cvar.notify_one();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut lock = lock.lock().unwrap();
tx.send(()).unwrap();
assert!(!*lock);
while !*lock {
lock = cvar.wait(lock).unwrap();
}
}
#[test]
fn test_arc_condvar_poison() {
let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move || -> () {
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
let _g = lock.lock().unwrap();
cvar.notify_one();
// Parent should fail when it wakes up.
panic!();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut lock = lock.lock().unwrap();
tx.send(()).unwrap();
while *lock == 1 {
match cvar.wait(lock) {
Ok(l) => {
lock = l;
assert_eq!(*lock, 1);
}
Err(..) => break,
}
}
}
#[test]
fn test_mutex_arc_poison() {
let arc = Arc::new(Mutex::new(1));
assert!(!arc.is_poisoned());
let arc2 = arc.clone();
let _ = thread::spawn(move|| {
let lock = arc2.lock().unwrap();
assert_eq!(*lock, 2);
}).join();
assert!(arc.lock().is_err());
assert!(arc.is_poisoned());
}
#[test]
fn test_mutex_arc_nested() {
// Tests nested mutexes and access
// to underlying data.
let arc = Arc::new(Mutex::new(1));
let arc2 = Arc::new(Mutex::new(arc));
let (tx, rx) = channel();
let _t = thread::spawn(move|| {
let lock = arc2.lock().unwrap();
let lock2 = lock.lock().unwrap();
assert_eq!(*lock2, 1);
tx.send(()).unwrap();
});
rx.recv().unwrap();
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = Arc::new(Mutex::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move|| -> () {
struct Unwinder {
i: Arc<Mutex<i32>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock().unwrap() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
}).join();
let lock = arc.lock().unwrap();
assert_eq!(*lock, 2);
}
#[test]
fn test_mutex_unsized() {
let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
{
let b = &mut *mutex.lock().unwrap();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*mutex.lock().unwrap(), comp);
}
}

1
ctr-std/src/sys/unix/mod.rs

@ -13,6 +13,7 @@
pub mod ext; pub mod ext;
pub mod fast_thread_local; pub mod fast_thread_local;
pub mod memchr; pub mod memchr;
pub mod mutex;
pub mod os; pub mod os;
pub mod os_str; pub mod os_str;
pub mod path; pub mod path;

84
ctr-std/src/sys/unix/mutex.rs

@ -0,0 +1,84 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cell::UnsafeCell;
use mem;
use libctru::synchronization;
pub struct Mutex { inner: UnsafeCell<synchronization::LightLock> }
#[inline]
pub unsafe fn raw(m: &Mutex) -> *mut synchronization::LightLock {
m.inner.get()
}
unsafe impl Send for Mutex {}
unsafe impl Sync for Mutex {}
#[allow(dead_code)] // sys isn't exported yet
impl Mutex {
pub const fn new() -> Mutex {
Mutex { inner: UnsafeCell::new(0) }
}
#[inline]
pub unsafe fn init(&mut self) {
synchronization::LightLock_Init(self.inner.get());
}
#[inline]
pub unsafe fn lock(&self) {
synchronization::LightLock_Lock(self.inner.get());
}
#[inline]
pub unsafe fn unlock(&self) {
synchronization::LightLock_Unlock(self.inner.get());
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
match synchronization::LightLock_TryLock(self.inner.get()) {
0 => true,
_ => false,
}
}
#[inline]
pub unsafe fn destroy(&self) {}
}
pub struct ReentrantMutex { inner: UnsafeCell<synchronization::RecursiveLock> }
unsafe impl Send for ReentrantMutex {}
unsafe impl Sync for ReentrantMutex {}
impl ReentrantMutex {
pub unsafe fn uninitialized() -> ReentrantMutex {
ReentrantMutex { inner: mem::uninitialized() }
}
#[inline]
pub unsafe fn init(&mut self) {
synchronization::RecursiveLock_Init(self.inner.get());
}
#[inline]
pub unsafe fn lock(&self) {
synchronization::RecursiveLock_Lock(self.inner.get());
}
#[inline]
pub unsafe fn unlock(&self) {
synchronization::RecursiveLock_Unlock(self.inner.get());
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
match synchronization::RecursiveLock_TryLock(self.inner.get()) {
0 => true,
_ => false,
}
}
#[inline]
pub unsafe fn destroy(&self) {}
}

3
ctr-std/src/sys_common/mod.rs

@ -25,6 +25,9 @@
#![allow(missing_docs)] #![allow(missing_docs)]
pub mod io; pub mod io;
pub mod mutex;
pub mod poison;
pub mod remutex;
pub mod thread_local; pub mod thread_local;
// common error constructors // common error constructors

66
ctr-std/src/sys_common/mutex.rs

@ -0,0 +1,66 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use sys::mutex as imp;
/// An OS-based mutual exclusion lock.
///
/// This is the thinnest cross-platform wrapper around OS mutexes. All usage of
/// this mutex is unsafe and it is recommended to instead use the safe wrapper
/// at the top level of the crate instead of this type.
pub struct Mutex(imp::Mutex);
unsafe impl Sync for Mutex {}
impl Mutex {
/// Creates a new mutex for use.
///
/// Behavior is undefined if the mutex is moved after it is
/// first used with any of the functions below.
pub const fn new() -> Mutex { Mutex(imp::Mutex::new()) }
/// Prepare the mutex for use.
///
/// This should be called once the mutex is at a stable memory address.
#[inline]
pub unsafe fn init(&mut self) { self.0.init() }
/// Locks the mutex blocking the current thread until it is available.
///
/// Behavior is undefined if the mutex has been moved between this and any
/// previous function call.
#[inline]
pub unsafe fn lock(&self) { self.0.lock() }
/// Attempts to lock the mutex without blocking, returning whether it was
/// successfully acquired or not.
///
/// Behavior is undefined if the mutex has been moved between this and any
/// previous function call.
#[inline]
pub unsafe fn try_lock(&self) -> bool { self.0.try_lock() }
/// Unlocks the mutex.
///
/// Behavior is undefined if the current thread does not actually hold the
/// mutex.
#[inline]
pub unsafe fn unlock(&self) { self.0.unlock() }
/// Deallocates all resources associated with this mutex.
///
/// Behavior is undefined if there are current or will be future users of
/// this mutex.
#[inline]
pub unsafe fn destroy(&self) { self.0.destroy() }
}
// not meant to be exported to the outside world, just the containing module
pub fn raw(mutex: &Mutex) -> &imp::Mutex { &mutex.0 }

199
ctr-std/src/sys_common/poison.rs

@ -0,0 +1,199 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use error::{Error};
use fmt;
use sync::atomic::{AtomicBool, Ordering};
use thread;
pub struct Flag { failed: AtomicBool }
// Note that the Ordering uses to access the `failed` field of `Flag` below is
// always `Relaxed`, and that's because this isn't actually protecting any data,
// it's just a flag whether we've panicked or not.
//
// The actual location that this matters is when a mutex is **locked** which is
// where we have external synchronization ensuring that we see memory
// reads/writes to this flag.
//
// As a result, if it matters, we should see the correct value for `failed` in
// all cases.
impl Flag {
pub const fn new() -> Flag {
Flag { failed: AtomicBool::new(false) }
}
#[inline]
pub fn borrow(&self) -> LockResult<Guard> {
let ret = Guard { panicking: thread::panicking() };
if self.get() {
Err(PoisonError::new(ret))
} else {
Ok(ret)
}
}
#[inline]
pub fn done(&self, guard: &Guard) {
if !guard.panicking && thread::panicking() {
self.failed.store(true, Ordering::Relaxed);
}
}
#[inline]
pub fn get(&self) -> bool {
self.failed.load(Ordering::Relaxed)
}
}
pub struct Guard {
panicking: bool,
}
/// A type of error which can be returned whenever a lock is acquired.
///
/// Both Mutexes and RwLocks are poisoned whenever a thread fails while the lock
/// is held. The precise semantics for when a lock is poisoned is documented on
/// each lock, but once a lock is poisoned then all future acquisitions will
/// return this error.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct PoisonError<T> {
guard: T,
}
/// An enumeration of possible errors which can occur while calling the
/// `try_lock` method.
#[stable(feature = "rust1", since = "1.0.0")]
pub enum TryLockError<T> {
/// The lock could not be acquired because another thread failed while holding
/// the lock.
#[stable(feature = "rust1", since = "1.0.0")]
Poisoned(#[stable(feature = "rust1", since = "1.0.0")] PoisonError<T>),
/// The lock could not be acquired at this time because the operation would
/// otherwise block.
#[stable(feature = "rust1", since = "1.0.0")]
WouldBlock,
}
/// A type alias for the result of a lock method which can be poisoned.
///
/// The `Ok` variant of this result indicates that the primitive was not
/// poisoned, and the `Guard` is contained within. The `Err` variant indicates
/// that the primitive was poisoned. Note that the `Err` variant *also* carries
/// the associated guard, and it can be acquired through the `into_inner`
/// method.
#[stable(feature = "rust1", since = "1.0.0")]
pub type LockResult<Guard> = Result<Guard, PoisonError<Guard>>;
/// A type alias for the result of a nonblocking locking method.
///
/// For more information, see `LockResult`. A `TryLockResult` doesn't
/// necessarily hold the associated guard in the `Err` type as the lock may not
/// have been acquired for other reasons.
#[stable(feature = "rust1", since = "1.0.0")]
pub type TryLockResult<Guard> = Result<Guard, TryLockError<Guard>>;
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for PoisonError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
"PoisonError { inner: .. }".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for PoisonError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
"poisoned lock: another task failed inside".fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Error for PoisonError<T> {
fn description(&self) -> &str {
"poisoned lock: another task failed inside"
}
}
impl<T> PoisonError<T> {
/// Creates a `PoisonError`.
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn new(guard: T) -> PoisonError<T> {
PoisonError { guard: guard }
}
/// Consumes this error indicating that a lock is poisoned, returning the
/// underlying guard to allow access regardless.
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn into_inner(self) -> T { self.guard }
/// Reaches into this error indicating that a lock is poisoned, returning a
/// reference to the underlying guard to allow access regardless.
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn get_ref(&self) -> &T { &self.guard }
/// Reaches into this error indicating that a lock is poisoned, returning a
/// mutable reference to the underlying guard to allow access regardless.
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn get_mut(&mut self) -> &mut T { &mut self.guard }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> From<PoisonError<T>> for TryLockError<T> {
fn from(err: PoisonError<T>) -> TryLockError<T> {
TryLockError::Poisoned(err)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Debug for TryLockError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TryLockError::Poisoned(..) => "Poisoned(..)".fmt(f),
TryLockError::WouldBlock => "WouldBlock".fmt(f)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Display for TryLockError<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TryLockError::Poisoned(..) => "poisoned lock: another task failed inside",
TryLockError::WouldBlock => "try_lock failed because the operation would block"
}.fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Error for TryLockError<T> {
fn description(&self) -> &str {
match *self {
TryLockError::Poisoned(ref p) => p.description(),
TryLockError::WouldBlock => "try_lock failed because the operation would block"
}
}
fn cause(&self) -> Option<&Error> {
match *self {
TryLockError::Poisoned(ref p) => Some(p),
_ => None
}
}
}
pub fn map_result<T, U, F>(result: LockResult<T>, f: F)
-> LockResult<U>
where F: FnOnce(T) -> U {
match result {
Ok(t) => Ok(f(t)),
Err(PoisonError { guard }) => Err(PoisonError::new(f(guard)))
}
}

236
ctr-std/src/sys_common/remutex.rs

@ -0,0 +1,236 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use fmt;
use marker;
use ops::Deref;
use sys_common::poison::{self, TryLockError, TryLockResult, LockResult};
use sys::mutex as sys;
/// A re-entrant mutual exclusion
///
/// This mutex will block *other* threads waiting for the lock to become
/// available. The thread which has already locked the mutex can lock it
/// multiple times without blocking, preventing a common source of deadlocks.
pub struct ReentrantMutex<T> {
inner: Box<sys::ReentrantMutex>,
poison: poison::Flag,
data: T,
}
unsafe impl<T: Send> Send for ReentrantMutex<T> {}
unsafe impl<T: Send> Sync for ReentrantMutex<T> {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// Deref implementation.
///
/// # Mutability
///
/// Unlike `MutexGuard`, `ReentrantMutexGuard` does not implement `DerefMut`,
/// because implementation of the trait would violate Rust’s reference aliasing
/// rules. Use interior mutability (usually `RefCell`) in order to mutate the
/// guarded data.
#[must_use]
pub struct ReentrantMutexGuard<'a, T: 'a> {
// funny underscores due to how Deref currently works (it disregards field
// privacy).
__lock: &'a ReentrantMutex<T>,
__poison: poison::Guard,
}
impl<'a, T> !marker::Send for ReentrantMutexGuard<'a, T> {}
impl<T> ReentrantMutex<T> {
/// Creates a new reentrant mutex in an unlocked state.
pub fn new(t: T) -> ReentrantMutex<T> {
unsafe {
let mut mutex = ReentrantMutex {
inner: box sys::ReentrantMutex::uninitialized(),
poison: poison::Flag::new(),
data: t,
};
mutex.inner.init();
mutex
}
}
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the caller until it is available to acquire the mutex.
/// Upon returning, the thread is the only thread with the mutex held. When the thread
/// calling this method already holds the lock, the call shall succeed without
/// blocking.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return failure if the mutex would otherwise be
/// acquired.
pub fn lock(&self) -> LockResult<ReentrantMutexGuard<T>> {
unsafe { self.inner.lock() }
ReentrantMutexGuard::new(&self)
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `Err` is returned.
/// Otherwise, an RAII guard is returned.
///
/// This function does not block.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return failure if the mutex would otherwise be
/// acquired.
pub fn try_lock(&self) -> TryLockResult<ReentrantMutexGuard<T>> {
if unsafe { self.inner.try_lock() } {
Ok(ReentrantMutexGuard::new(&self)?)
} else {
Err(TryLockError::WouldBlock)
}
}
}
impl<T> Drop for ReentrantMutex<T> {
fn drop(&mut self) {
// This is actually safe b/c we know that there is no further usage of
// this mutex (it's up to the user to arrange for a mutex to get
// dropped, that's not our job)
unsafe { self.inner.destroy() }
}
}
impl<T: fmt::Debug + 'static> fmt::Debug for ReentrantMutex<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Ok(guard) => write!(f, "ReentrantMutex {{ data: {:?} }}", &*guard),
Err(TryLockError::Poisoned(err)) => {
write!(f, "ReentrantMutex {{ data: Poisoned({:?}) }}", &**err.get_ref())
},
Err(TryLockError::WouldBlock) => write!(f, "ReentrantMutex {{ <locked> }}")
}
}
}
impl<'mutex, T> ReentrantMutexGuard<'mutex, T> {
fn new(lock: &'mutex ReentrantMutex<T>)
-> LockResult<ReentrantMutexGuard<'mutex, T>> {
poison::map_result(lock.poison.borrow(), |guard| {
ReentrantMutexGuard {
__lock: lock,
__poison: guard,
}
})
}
}
impl<'mutex, T> Deref for ReentrantMutexGuard<'mutex, T> {
type Target = T;
fn deref(&self) -> &T {
&self.__lock.data
}
}
impl<'a, T> Drop for ReentrantMutexGuard<'a, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.__lock.poison.done(&self.__poison);
self.__lock.inner.unlock();
}
}
}
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use sys_common::remutex::{ReentrantMutex, ReentrantMutexGuard};
use cell::RefCell;
use sync::Arc;
use thread;
#[test]
fn smoke() {
let m = ReentrantMutex::new(());
{
let a = m.lock().unwrap();
{
let b = m.lock().unwrap();
{
let c = m.lock().unwrap();
assert_eq!(*c, ());
}
assert_eq!(*b, ());
}
assert_eq!(*a, ());
}
}
#[test]
fn is_mutex() {
let m = Arc::new(ReentrantMutex::new(RefCell::new(0)));
let m2 = m.clone();
let lock = m.lock().unwrap();
let child = thread::spawn(move || {
let lock = m2.lock().unwrap();
assert_eq!(*lock.borrow(), 4950);
});
for i in 0..100 {
let lock = m.lock().unwrap();
*lock.borrow_mut() += i;
}
drop(lock);
child.join().unwrap();
}
#[test]
fn trylock_works() {
let m = Arc::new(ReentrantMutex::new(()));
let m2 = m.clone();
let _lock = m.try_lock().unwrap();
let _lock2 = m.try_lock().unwrap();
thread::spawn(move || {
let lock = m2.try_lock();
assert!(lock.is_err());
}).join().unwrap();
let _lock3 = m.try_lock().unwrap();
}
pub struct Answer<'a>(pub ReentrantMutexGuard<'a, RefCell<u32>>);
impl<'a> Drop for Answer<'a> {
fn drop(&mut self) {
*self.0.borrow_mut() = 42;
}
}
#[test]
fn poison_works() {
let m = Arc::new(ReentrantMutex::new(RefCell::new(0)));
let mc = m.clone();
let result = thread::spawn(move ||{
let lock = mc.lock().unwrap();
*lock.borrow_mut() = 1;
let lock2 = mc.lock().unwrap();
*lock.borrow_mut() = 2;
let _answer = Answer(lock2);
panic!("What the answer to my lifetimes dilemma is?");
}).join();
assert!(result.is_err());
let r = m.lock().err().unwrap().into_inner();
assert_eq!(*r.borrow(), 42);
}
}

5
ctr-std/src/thread/mod.rs

@ -193,3 +193,8 @@ pub use self::local::{LocalKey, LocalKeyState};
#[doc(hidden)] pub use sys::fast_thread_local::Key as __FastLocalKeyInner; #[doc(hidden)] pub use sys::fast_thread_local::Key as __FastLocalKeyInner;
#[unstable(feature = "libstd_thread_internals", issue = "0")] #[unstable(feature = "libstd_thread_internals", issue = "0")]
#[doc(hidden)] pub use self::local::os::Key as __OsLocalKeyInner; #[doc(hidden)] pub use self::local::os::Key as __OsLocalKeyInner;
// We don't have stack unwinding, so this should always be false
pub fn panicking() -> bool {
false
}

Loading…
Cancel
Save