Luna Lailatova
2 years ago
4 changed files with 381 additions and 23 deletions
@ -0,0 +1,96 @@ |
|||||||
|
class Grid(): |
||||||
|
def __init__(self): |
||||||
|
self.sandCount = 0 |
||||||
|
self._grid = [] |
||||||
|
for _ in range(maxY): |
||||||
|
self._grid.append([]) |
||||||
|
for line in self._grid: |
||||||
|
for _ in range(maxX): |
||||||
|
line.append('.') |
||||||
|
|
||||||
|
def drawRocks(self, start, end): |
||||||
|
if start[0] == end[0]: |
||||||
|
_min = min(start[1], end[1]) |
||||||
|
_max = max(start[1], end[1]) |
||||||
|
for i in range(_max - _min + 1): |
||||||
|
self._grid[_min + i][start[0]-modifier] = '#' |
||||||
|
if start[1] == end[1]: |
||||||
|
_min = min(start[0], end[0]) - modifier |
||||||
|
_max = max(start[0], end[0]) - modifier |
||||||
|
for i in range(_max - _min + 1): |
||||||
|
self._grid[start[1]][_min + i] = '#' |
||||||
|
|
||||||
|
def printGrid(self): |
||||||
|
for line in self._grid: |
||||||
|
tempA = '' |
||||||
|
for coord in line: |
||||||
|
tempA += coord |
||||||
|
print(tempA) |
||||||
|
|
||||||
|
def sand(self): |
||||||
|
while True: |
||||||
|
posX = 500 - modifier |
||||||
|
posY = 0 |
||||||
|
while posY < (maxY - 1): |
||||||
|
if self._grid[posY + 1][posX] == '.': |
||||||
|
posY += 1 |
||||||
|
elif self._grid[posY +1][posX - 1] == '.': |
||||||
|
posY += 1 |
||||||
|
posX -= 1 |
||||||
|
elif self._grid[posY +1][posX + 1] == '.': |
||||||
|
posY += 1 |
||||||
|
posX += 1 |
||||||
|
else: |
||||||
|
self._grid[posY][posX] = 'o' |
||||||
|
self.sandCount += 1 |
||||||
|
break |
||||||
|
if posY == maxY - 1: |
||||||
|
return |
||||||
|
|
||||||
|
def evaluate(self): |
||||||
|
return self.sandCount |
||||||
|
|
||||||
|
with open('input14.txt','r') as f: |
||||||
|
inp = f.read().splitlines(keepends=False) |
||||||
|
|
||||||
|
lines = [] |
||||||
|
|
||||||
|
for line in inp: |
||||||
|
lines.append(line.split(' -> ')) |
||||||
|
for i in range(len(lines)): |
||||||
|
for j in range(len(lines[i])): |
||||||
|
lines[i][j] = tuple(map(int, lines[i][j].split(','))) |
||||||
|
|
||||||
|
maxY = None |
||||||
|
modifier = None |
||||||
|
maxX = None |
||||||
|
for line in lines: |
||||||
|
for point in line: |
||||||
|
if modifier is None or modifier > point[0]: |
||||||
|
modifier = point[0] |
||||||
|
if maxX is None or maxX < point[0]: |
||||||
|
maxX = point[0] |
||||||
|
if maxY is None or maxY < point[1]: |
||||||
|
maxY = point[1] |
||||||
|
maxX = maxX - (modifier - 3) |
||||||
|
modifier -= 1 |
||||||
|
maxY += 2 |
||||||
|
|
||||||
|
cave = Grid() |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
for line in lines: |
||||||
|
for j in range(len(line)-1): |
||||||
|
cave.drawRocks(line[j], line[j+1]) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print('---------------') |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
print('---------------') |
||||||
|
cave.sand() |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
print('---------------') |
||||||
|
print(cave.evaluate()) |
@ -0,0 +1,116 @@ |
|||||||
|
class Grid(): |
||||||
|
def __init__(self): |
||||||
|
self.sandCount = 0 |
||||||
|
self._grid = [] |
||||||
|
for _ in range(maxY): |
||||||
|
self._grid.append([]) |
||||||
|
for line in self._grid: |
||||||
|
for _ in range(maxX): |
||||||
|
line.append('.') |
||||||
|
for i in range(len(self._grid[-1])): |
||||||
|
self._grid[-1][i] = '#' |
||||||
|
|
||||||
|
def drawRocks(self, start, end): |
||||||
|
if start[0] == end[0]: |
||||||
|
_min = min(start[1], end[1]) |
||||||
|
_max = max(start[1], end[1]) |
||||||
|
for i in range(_max - _min + 1): |
||||||
|
self._grid[_min + i][start[0]-modifier] = '#' |
||||||
|
if start[1] == end[1]: |
||||||
|
_min = min(start[0], end[0]) - modifier |
||||||
|
_max = max(start[0], end[0]) - modifier |
||||||
|
for i in range(_max - _min + 1): |
||||||
|
self._grid[start[1]][_min + i] = '#' |
||||||
|
|
||||||
|
def printGrid(self): |
||||||
|
for line in self._grid: |
||||||
|
tempA = '' |
||||||
|
for coord in line: |
||||||
|
tempA += coord |
||||||
|
print(tempA) |
||||||
|
|
||||||
|
def sand(self): |
||||||
|
while True: |
||||||
|
posX = 500 - modifier |
||||||
|
posY = 0 |
||||||
|
while True: |
||||||
|
if posX == 0: |
||||||
|
self.expand('left') |
||||||
|
posX += 1 |
||||||
|
if posX == len(self._grid[0]) - 1: |
||||||
|
self.expand('rigth') |
||||||
|
if self._grid[posY + 1][posX] == '.': |
||||||
|
posY += 1 |
||||||
|
elif self._grid[posY +1][posX - 1] == '.': |
||||||
|
posY += 1 |
||||||
|
posX -= 1 |
||||||
|
elif self._grid[posY +1][posX + 1] == '.': |
||||||
|
posY += 1 |
||||||
|
posX += 1 |
||||||
|
else: |
||||||
|
self._grid[posY][posX] = 'o' |
||||||
|
self.sandCount += 1 |
||||||
|
if posY == 0 and posX == 500 - modifier: |
||||||
|
return |
||||||
|
break |
||||||
|
|
||||||
|
def expand(self, direction): |
||||||
|
global modifier |
||||||
|
if direction == 'left': |
||||||
|
for i in (range(len(self._grid)-1)): |
||||||
|
self._grid[i].insert(0, '.') |
||||||
|
self._grid[-1].insert(0, '#') |
||||||
|
modifier -= 1 |
||||||
|
if direction == 'rigth': |
||||||
|
for i in (range(len(self._grid)-1)): |
||||||
|
self._grid[i].append('.') |
||||||
|
self._grid[-1].append('#') |
||||||
|
|
||||||
|
|
||||||
|
def evaluate(self): |
||||||
|
return self.sandCount |
||||||
|
|
||||||
|
with open('input14.txt','r') as f: |
||||||
|
inp = f.read().splitlines(keepends=False) |
||||||
|
|
||||||
|
lines = [] |
||||||
|
|
||||||
|
for line in inp: |
||||||
|
lines.append(line.split(' -> ')) |
||||||
|
for i in range(len(lines)): |
||||||
|
for j in range(len(lines[i])): |
||||||
|
lines[i][j] = tuple(map(int, lines[i][j].split(','))) |
||||||
|
|
||||||
|
maxY = None |
||||||
|
modifier = None |
||||||
|
maxX = None |
||||||
|
for line in lines: |
||||||
|
for point in line: |
||||||
|
if modifier is None or modifier > point[0]: |
||||||
|
modifier = point[0] |
||||||
|
if maxX is None or maxX < point[0]: |
||||||
|
maxX = point[0] |
||||||
|
if maxY is None or maxY < point[1]: |
||||||
|
maxY = point[1] |
||||||
|
maxX = maxX - (modifier - 3) |
||||||
|
modifier -= 1 |
||||||
|
maxY += 3 |
||||||
|
|
||||||
|
cave = Grid() |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
for line in lines: |
||||||
|
for j in range(len(line)-1): |
||||||
|
cave.drawRocks(line[j], line[j+1]) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print('---------------') |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
print('---------------') |
||||||
|
cave.sand() |
||||||
|
cave.printGrid() |
||||||
|
|
||||||
|
print('---------------') |
||||||
|
print(cave.evaluate()) |
@ -1,23 +1,2 @@ |
|||||||
[1,1,3,1,1] |
498,4 -> 498,6 -> 496,6 |
||||||
[1,1,5,1,1] |
503,4 -> 502,4 -> 502,9 -> 494,9 |
||||||
|
|
||||||
[[1],[2,3,4]] |
|
||||||
[[1],4] |
|
||||||
|
|
||||||
[9] |
|
||||||
[[8,7,6]] |
|
||||||
|
|
||||||
[[4,4],4,4] |
|
||||||
[[4,4],4,4,4] |
|
||||||
|
|
||||||
[7,7,7,7] |
|
||||||
[7,7,7] |
|
||||||
|
|
||||||
[] |
|
||||||
[3] |
|
||||||
|
|
||||||
[[[]]] |
|
||||||
[[]] |
|
||||||
|
|
||||||
[1,[2,[3,[4,[5,6,7]]]],8,9] |
|
||||||
[1,[2,[3,[4,[5,6,0]]]],8,9] |
|
@ -0,0 +1,167 @@ |
|||||||
|
512,137 -> 522,137 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
530,159 -> 534,159 |
||||||
|
472,109 -> 472,110 -> 488,110 -> 488,109 |
||||||
|
481,88 -> 485,88 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
478,85 -> 482,85 |
||||||
|
494,32 -> 498,32 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
488,32 -> 492,32 |
||||||
|
494,28 -> 498,28 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
485,34 -> 489,34 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
491,26 -> 495,26 |
||||||
|
484,85 -> 488,85 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
472,109 -> 472,110 -> 488,110 -> 488,109 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
491,34 -> 495,34 |
||||||
|
498,121 -> 498,122 -> 509,122 -> 509,121 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
484,79 -> 488,79 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
475,88 -> 479,88 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
482,32 -> 486,32 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
472,91 -> 476,91 |
||||||
|
488,28 -> 492,28 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
477,119 -> 482,119 |
||||||
|
524,159 -> 528,159 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
497,34 -> 501,34 |
||||||
|
481,82 -> 485,82 |
||||||
|
498,121 -> 498,122 -> 509,122 -> 509,121 |
||||||
|
490,115 -> 495,115 |
||||||
|
487,82 -> 491,82 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
518,159 -> 522,159 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
503,34 -> 507,34 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
493,88 -> 497,88 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
527,156 -> 531,156 |
||||||
|
498,119 -> 503,119 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
500,32 -> 504,32 |
||||||
|
487,88 -> 491,88 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
491,119 -> 496,119 |
||||||
|
479,34 -> 483,34 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
487,117 -> 492,117 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
496,91 -> 500,91 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
487,75 -> 487,76 -> 499,76 -> 499,75 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
484,91 -> 488,91 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
490,91 -> 494,91 |
||||||
|
490,85 -> 494,85 |
||||||
|
485,30 -> 489,30 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
483,115 -> 488,115 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
484,119 -> 489,119 |
||||||
|
524,153 -> 528,153 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
491,30 -> 495,30 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
521,156 -> 525,156 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
486,113 -> 491,113 |
||||||
|
497,30 -> 501,30 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
514,162 -> 514,165 -> 513,165 -> 513,171 -> 526,171 -> 526,165 -> 519,165 -> 519,162 |
||||||
|
519,150 -> 519,140 -> 519,150 -> 521,150 -> 521,140 -> 521,150 -> 523,150 -> 523,141 -> 523,150 -> 525,150 -> 525,142 -> 525,150 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
507,125 -> 507,127 -> 505,127 -> 505,134 -> 514,134 -> 514,127 -> 513,127 -> 513,125 |
||||||
|
494,117 -> 499,117 |
||||||
|
478,91 -> 482,91 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
472,109 -> 472,110 -> 488,110 -> 488,109 |
||||||
|
499,62 -> 499,66 -> 495,66 -> 495,70 -> 510,70 -> 510,66 -> 503,66 -> 503,62 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
487,75 -> 487,76 -> 499,76 -> 499,75 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
468,47 -> 468,37 -> 468,47 -> 470,47 -> 470,37 -> 470,47 -> 472,47 -> 472,41 -> 472,47 -> 474,47 -> 474,39 -> 474,47 -> 476,47 -> 476,44 -> 476,47 -> 478,47 -> 478,45 -> 478,47 -> 480,47 -> 480,37 -> 480,47 -> 482,47 -> 482,40 -> 482,47 -> 484,47 -> 484,42 -> 484,47 -> 486,47 -> 486,38 -> 486,47 |
||||||
|
480,117 -> 485,117 |
||||||
|
494,23 -> 494,22 -> 494,23 -> 496,23 -> 496,17 -> 496,23 -> 498,23 -> 498,20 -> 498,23 -> 500,23 -> 500,14 -> 500,23 -> 502,23 -> 502,13 -> 502,23 -> 504,23 -> 504,15 -> 504,23 |
||||||
|
498,121 -> 498,122 -> 509,122 -> 509,121 |
||||||
|
487,75 -> 487,76 -> 499,76 -> 499,75 |
||||||
|
507,50 -> 507,53 -> 501,53 -> 501,59 -> 516,59 -> 516,53 -> 511,53 -> 511,50 |
||||||
|
462,104 -> 462,99 -> 462,104 -> 464,104 -> 464,98 -> 464,104 -> 466,104 -> 466,102 -> 466,104 -> 468,104 -> 468,97 -> 468,104 -> 470,104 -> 470,96 -> 470,104 -> 472,104 -> 472,99 -> 472,104 -> 474,104 -> 474,100 -> 474,104 -> 476,104 -> 476,96 -> 476,104 -> 478,104 -> 478,97 -> 478,104 |
Loading…
Reference in new issue