Compare commits

...

5 Commits

  1. 77
      day14-2.py
  2. 47
      day14.py
  3. 138
      day15-2.py
  4. 80
      day15.py
  5. 38
      day17-2.py
  6. 7
      day17.py
  7. 172
      day18.py
  8. 75
      day20-2.py
  9. 74
      day20.py
  10. 102
      input14.txt
  11. 100
      input15.txt
  12. 100
      input18.txt
  13. 102
      input20.txt
  14. 18
      testdata14.txt
  15. 50
      testdata15-2.txt
  16. 10
      testdata15.txt
  17. 10
      testdata18-2.txt
  18. 2
      testdata18-3.txt
  19. 10
      testdata18.txt
  20. 7
      testdata20.txt

77
day14-2.py

@ -0,0 +1,77 @@
from io import DEFAULT_BUFFER_SIZE
import sys
poly = None
inserters = {}
class polyme:
def __init__(self, initial):
self.Polymere = []
self.letters = {}
self.dubles = {}
for f in initial:
self.Polymere.append(f)
for i in range(len(self.Polymere)):
if i != len(self.Polymere) - 1:
temp = self.Polymere[i] + self.Polymere[i + 1]
g = self.dubles.setdefault(temp, 0)
g += 1
self.dubles.update({temp : g})
temp2 = self.letters.setdefault(self.Polymere[i], 0)
temp2 += 1
self.letters.update({self.Polymere[i] : temp2})
print(self.letters, self.dubles, self.Polymere)
def steppy(self):
tempdict = {}
tempdict.clear()
print(tempdict)
for key, insert in inserters.items():
if key in self.dubles:
count = self.dubles[key]
if insert in self.letters:
adletters = self.letters[insert]
else:
adletters = 0
adletters += count
self.letters.update({insert : adletters})
dub1 = key[0] + insert
dub2 = insert + key[1]
g = tempdict.setdefault(dub1, 0)
g += count
tempdict.update({dub1 : g})
g = tempdict.setdefault(dub2, 0)
g += count
tempdict.update({dub2 : g})
g = tempdict.setdefault(key, 0)
g -= count
tempdict.update({key : g})
for dub, amount in tempdict.items():
g = self.dubles.setdefault(dub, 0)
g += amount
self.dubles.update({dub : g})
print(self.letters, self.dubles, self.Polymere)
def findsolu(self):
temp = self.letters.values()
print(temp)
temp2 = max(temp) - min(temp)
return temp2
with open(sys.argv[1], 'r') as f:
for g in f.readlines():
g = g.strip()
if poly is None:
poly = polyme(g)
continue
if g == '':
continue
else:
temp1, temp2 = g.split(' -> ')
inserters.update({temp1:temp2})
for i in range(40):
poly.steppy()
print(poly.findsolu())

47
day14.py

@ -0,0 +1,47 @@
import sys
poly = None
inserters = {}
class polyme:
def __init__(self, initial):
self.Polymere = []
for f in initial:
self.Polymere.append(f)
def steppy(self):
counter = 0
temp = len(self.Polymere) - 1
for i in range(temp):
active = self.Polymere[i + counter] + self.Polymere[i+1 + counter]
for key, insert in inserters.items():
if active == key:
#print(key ,insert)
self.Polymere.insert(i + counter + 1, insert)
counter += 1
def findsolu(self):
self.solution = {}
for f in self.Polymere:
g = self.solution.setdefault(f, 0)
g += 1
self.solution.update({f : g})
temp = self.solution.values()
print(temp)
temp2 = max(temp) - min(temp)
return temp2
with open(sys.argv[1], 'r') as f:
for g in f.readlines():
g = g.strip()
if poly is None:
poly = polyme(g)
continue
if g == '':
continue
else:
temp1, temp2 = g.split(' -> ')
inserters.update({temp1:temp2})
for i in range(10):
poly.steppy()
print(poly.findsolu())

138
day15-2.py

@ -0,0 +1,138 @@
from queue import PriorityQueue
import sys
import copy
class grid:
def __init__(self):
self.y = []
self.attempts = 0
self.solutions = 0
self.current_smallest_solution_level = None
self.point_costs = {(0, 0): 0}
self.next_point_queue = PriorityQueue()
self.next_point_queue.put((0, (0, 0)))
self.visited = {}
def addline(self, line):
self.y.append([int(i) for i in line])
self.maxy = len(self.y) - 1
self.maxx = len(self.y[0]) - 1
# print(self.maxx)
# print(self.maxy)
def largegrid(self):
for f in self.y:
temp = copy.copy(f)
for i in range(1, 5):
for t in range(len(temp)):
temp[t] += 1
if temp[t] > 9:
temp[t] -= 9
f.extend(temp)
temp2 = copy.copy(self.y)
for i in range(1, 5):
temp3 = copy.copy(temp2)
for f in temp3:
self.y.append([(g+i-1) % 9 + 1 for g in f])
self.maxy = len(self.y) - 1
self.maxx = len(self.y[0]) - 1
# def initialpath(self):
def findpath(self):
while not self.next_point_queue.empty():
level, poi = self.next_point_queue.get()
if self.visited.get(poi, False):
continue
self.visited[poi] = True
self.attempts += 1
if self.attempts % 100000 == 0:
print('Attempt %d, solutions: %d, cost: %d, visited: %d, queued: %d' % (
self.attempts, self.solutions, self.current_smallest_solution_level or -1,
len(self.visited), self.next_point_queue.qsize()))
neighbors = self.get_neighbors(poi, level)
for i in neighbors:
next_level = level + int(self.y[i[0]][i[1]])
if (self.current_smallest_solution_level is not None and
next_level > self.current_smallest_solution_level):
# We already found a solution that was overall less risky
# than the current path, so who cares.
continue
if i == (self.maxy, self.maxx):
self.solutions += 1
if (self.current_smallest_solution_level is None or
next_level < self.current_smallest_solution_level):
self.current_smallest_solution_level = next_level
# print('Found solution: ', i, ', orig level ', level)
continue
elif self.visited.get(i, False) and (i in self.point_costs and self.point_costs[i] <= next_level):
# We already visited the point on a cheaper path.
continue
else:
# print('Path: %s, next: %s' % (repr(path), i))
self.point_costs[i] = next_level
self.next_point_queue.put((next_level, i))
# Try to find a path from the current point to the end by going down and right
# alternatingly, so we can restrict the search to paths less costly than the
# current one.
next_level = level
while poi != (self.maxx, self.maxy):
if poi[0] < self.maxx:
poi = (poi[0] + 1, poi[1])
next_level += int(self.y[poi[0]][poi[1]])
if poi in self.point_costs and next_level > self.point_costs[poi]:
break
self.point_costs[poi] = next_level
if poi[1] < self.maxy:
poi = (poi[0], poi[1] + 1)
next_level += int(self.y[poi[0]][poi[1]])
if poi in self.point_costs and next_level > self.point_costs[poi]:
break
self.point_costs[poi] = next_level
if poi == (self.maxx, self.maxy):
self.solutions += 1
if (self.current_smallest_solution_level is None or
next_level < self.current_smallest_solution_level):
self.current_smallest_solution_level = next_level
def get_neighbors(self, poi, level):
nex = {}
rv = []
if poi[0] != self.maxy:
nex.setdefault(self.y[poi[0] + 1][poi[1]], list()).append((poi[0] + 1, poi[1]))
if poi[1] != self.maxx:
nex.setdefault(self.y[poi[0]][poi[1] + 1], list()).append((poi[0], poi[1] + 1))
if poi[0] != 0:
nex.setdefault(self.y[poi[0] - 1][poi[1]], list()).append((poi[0] - 1, poi[1]))
if poi[1] != 0:
nex.setdefault(self.y[poi[0]][poi[1] - 1], list()).append((poi[0], poi[1] - 1))
order = sorted(nex.keys())
for j in order:
for p in nex[j]:
if (p not in self.visited and
(p not in self.point_costs or self.point_costs[p] >= level + j)):
rv.append(p)
return rv
gri = grid()
with open(sys.argv[1], 'r') as f:
for i in f.readlines():
gri.addline(i.strip())
gri.largegrid()
#for f in gri.y:
# print("".join(map(str, f)))
gri.findpath()
print(gri.current_smallest_solution_level)

80
day15.py

@ -0,0 +1,80 @@
from queue import PriorityQueue
import sys
class grid:
def __init__(self):
self.y = []
self.attempts = 0
self.solutions = []
self.current_smallest_solution_level = None
self.point_costs = {(0, 0): 0}
self.next_point_queue = PriorityQueue()
self.next_point_queue.put((0, (0, 0)))
def addline(self, line):
self.y.append([int(i) for i in line])
self.maxy = len(self.y) - 1
self.maxx = len(self.y[0]) - 1
# print(self.maxx)
# print(self.maxy)
def findpath(self):
while not self.next_point_queue.empty():
level, poi = self.next_point_queue.get()
self.attempts += 1
if self.attempts % 100000 == 0:
print('Attempt %d, solutions: %d, cost: %d' % (self.attempts, len(self.solutions), self.current_smallest_solution_level or -1))
neighbors = self.get_neighbors(poi)
for i in neighbors:
next_level = level + int(self.y[i[0]][i[1]])
if (self.current_smallest_solution_level is not None and
next_level > self.current_smallest_solution_level):
# We already found a solution that was overall less risky
# than the current path, so who cares.
continue
if i == (self.maxy, self.maxx):
self.solutions.append(next_level)
if (self.current_smallest_solution_level is None or
next_level < self.current_smallest_solution_level):
self.current_smallest_solution_level = next_level
# print('Found solution: ', i, ', orig level ', level)
continue
elif i in self.point_costs and self.point_costs[i] < next_level:
# We already visited the point on a cheaper path.
continue
else:
# print('Path: %s, next: %s' % (repr(path), i))
self.point_costs[i] = next_level
self.next_point_queue.put((next_level, i))
def get_neighbors(self, poi):
nex = {}
rv = []
if poi[0] != self.maxy:
nex.setdefault(self.y[poi[0] + 1][poi[1]], list()).append((poi[0] + 1, poi[1]))
if poi[1] != self.maxx:
nex.setdefault(self.y[poi[0]][poi[1] + 1], list()).append((poi[0], poi[1] + 1))
if poi[0] != 0:
nex.setdefault(self.y[poi[0] - 1][poi[1]], list()).append((poi[0] - 1, poi[1]))
if poi[1] != 0:
nex.setdefault(self.y[poi[0]][poi[1] - 1], list()).append((poi[0], poi[1] - 1))
order = sorted(nex.keys())
for j in order:
rv += nex[j]
return rv
gri = grid()
with open(sys.argv[1], 'r') as f:
for i in f.readlines():
gri.addline(i.strip())
gri.findpath()
print(min(gri.solutions))

38
day17-2.py

@ -0,0 +1,38 @@
targetx = (175, 227) #(20, 30)
targety = (-134, -79) #(-10, -5)
trajectories = []
class probe:
def __init__(self, velo):
self.probe_position = (0, 0)
self.velocity = velo
self.initial_velo = velo
def steppy(self):
while self.probe_position[0] < targetx[1] and self.probe_position[1] > targety[0]:
x, y = self.probe_position
velox, veloy = self.velocity
x += velox
y += veloy
if x >= targetx[0] and x <= targetx[1] and y <= targety[1] and y >= targety[0]:
return self.initial_velo
veloy -= 1
if velox != 0:
if velox < 0:
velox += 1
if velox > 0:
velox -= 1
self.probe_position = (x, y)
self.velocity = (velox, veloy)
return None
for yvelo in range(targety[0], 0 - targety[0]):
for xvelo in range(1, targetx[1] + 1):
prob = probe((xvelo, yvelo))
t = prob.steppy()
if t is not None:
trajectories.append(t)
del prob
print(len(trajectories))

7
day17.py

@ -0,0 +1,7 @@
targetx = (175, 227)
targety = (-134, -79)
y = 0 - targety[0] - 1
y = (y*y + y)/2
print(y)

172
day18.py

@ -0,0 +1,172 @@
import math
import sys
def check_nested(inp):
peg_counter = 0
found = False
found2 = False
pair = ''
high_peg = None
for i in range(len(inp)):
if inp[i] == '[':
peg_counter += 1
if peg_counter > 4:
found = True
high_peg = peg_counter
pair = ''
start = i
if inp[i] == ']':
peg_counter -= 1
if found:
pair += inp[i]
if found and peg_counter == high_peg - 1:
end = i
found2 = True
break
if found2:
#print('Exploding ', pair)
pair = pair[1:-1]
left, rigth = pair.split(',')
tempnum = ''
digit_check = False
for i in range(end, len(inp)):
if inp[i].isdigit():
digit_check = True
digit_start = i
tempnum += inp[i]
#print('tempnum: ', tempnum)
if (inp[i] == ',' or inp[i] == ']') and digit_check:
# print('Replacing ', inp[i - len(tempnum):i], ' with ', str(int(tempnum) + int(rigth)), ' (', str(tempnum), ' + ' , str(rigth) + ')')
inp = inp[:i - len(tempnum)] + str(int(tempnum) + int(rigth)) + inp[i:]
break
# print('Replacing ', inp[start:end+1], ' with zero')
# print('B: ', inp)
inp = inp[:start] + '0' + inp[end + 1:]
# print('A: ', inp)
tempnum = ''
digit_check = False
for i in range(start - 1, 0, -1):
if inp[i].isdigit():
digit_check = True
digit_start = i
tempnum = inp[i] + tempnum
if (inp[i] == ',' or inp[i] == '[' ) and digit_check:
# print('Replacing ', inp[i+1:i+len(tempnum)+1], ' with ', str(int(tempnum) + int(left)))
inp = inp[:i + 1] + str(int(tempnum) + int(left)) + inp[len(tempnum) + i + 1:]
break
# print(inp)
return (inp, found2)
def check_split(inp):
checkmarker = 0
found = False
for i in range(len(inp)):
if inp[i].isdigit():
checkmarker += 1
else:
checkmarker = 0
if checkmarker == 2:
number_pos = i
number = int(inp[i-1] + inp[i])
number = number/2
found = True
break
if found:
new_pair = '[' + str(math.trunc(number)) + ',' + str(math.ceil(number)) + ']'
#print('Replacing ', inp[number_pos - 1:number_pos+1], ' with ', new_pair)
inp = inp[:number_pos - 1] + new_pair + inp[number_pos + 1:]
#print(inp)
return (inp, found)
def magnitude(inp):
found = False
number = ''
start = None
end = None
for i in range(len(inp)):
if inp[i] == '[':
start = i
if inp[i] == ']':
end = i
break
if start is None:
start = 0
if end is None:
end = len(inp)
for i in range(start, end):
number += inp[i]
if ',' in number:
found = True
left, rigth = number.split(',')
left = left[1:]
number = str(int(left)*3 + int(rigth)*2)
inp = inp[:start] + number + inp[end + 1:]
else:
inp = number
return (inp, found)
def reduct(inp):
reduction = True
while reduction:
eplode = True
split = True
while eplode:
inp, eplode = check_nested(inp)
reduction = False
inp, split = check_split(inp)
if split:
reduction = True
return(inp)
inp = []
with open(sys.argv[1], 'r') as f:
for g in f.readlines():
g = g.strip()
inp.append(g)
if sys.argv[2] == 'part1':
imp = inp[0]
inp.pop(0)
while len(inp) > 0:
print('___________________')
print(imp)
print('+', inp[0])
imp = '[' + imp + ',' + inp[0] + ']'
inp.pop(0)
imp = reduct(imp)
print('=', imp)
print('___________________')
done_check = True
while done_check:
imp, done_check = magnitude(imp)
print(imp, done_check)
if sys.argv[2] == 'part2':
high_mag = 0
for i in inp:
for f in inp:
if f != i:
imp = '[' + i + ',' + f + ']'
imp = reduct(imp)
done_check = True
while done_check:
imp, done_check = magnitude(imp)
if int(imp) > high_mag:
high_mag = int(imp)
print(high_mag)

75
day20-2.py

@ -0,0 +1,75 @@
import sys
class img:
def __init__(self):
self.y = []
def addline(self, line):
self.y.append(line)
def get_num(self,y,x, test):
number=''
if y != 0 and x != 0: number += self.y[y - 1][x - 1]
else: number += test
if y !=0: number += self.y[y - 1][x]
else: number += test
if y != 0 and x != len(self.y[0]) - 1: number += self.y[y - 1][x + 1]
else: number += test
if x != 0: number += self.y[y][x - 1]
else: number += test
number += self.y[y][x]
if x != len(self.y[0]) - 1: number += self.y[y][x + 1]
else: number += test
if y != len(self.y) - 1 and x != 0: number += self.y[y + 1][x - 1]
else: number += test
if y != len(self.y) - 1: number += self.y[y + 1][x]
else: number += test
if y != len(self.y) - 1 and x != len(self.y[0]) - 1: number += self.y[y + 1][x + 1]
else: number += test
number = number.replace('.', '0')
number = number.replace('#', '1')
return (int(number, 2))
def enhance(self, test):
new_image = []
self.y.insert(0, test*len(self.y[0]))
self.y.append(test*len(self.y[0]))
for i in range(len(self.y)):
self.y[i] = test + self.y[i] + test
for i in range(len(self.y)):
new_line = ''
for t in range(len(self.y[i])):
num = self.get_num(i,t,test)
new_line += algorithm[num]
new_image.append(new_line)
self.y = new_image.copy()
def count(self):
counter = 0
for f in self.y:
for g in f:
if g == '#':
counter += 1
return(counter)
image = img()
with open(sys.argv[1], 'r') as f:
toggle = False
for g in f.readlines():
g = g.strip()
if g == '':
toggle = True
if not toggle:
algorithm = g
if toggle and g != '':
image.addline(g)
for i in range(25):
image.enhance('.')
image.enhance('#')
print(image.count())

74
day20.py

@ -0,0 +1,74 @@
import sys
class img:
def __init__(self):
self.y = []
def addline(self, line):
self.y.append(line)
def get_num(self,y,x):
number=''
if y != 0 and x != 0: number += self.y[y - 1][x - 1]
else: number += '.'
if y !=0: number += self.y[y - 1][x]
else: number += '.'
if y != 0 and x != len(self.y[0]) - 1: number += self.y[y - 1][x + 1]
else: number += '.'
if x != 0: number += self.y[y][x - 1]
else: number += '.'
number += self.y[y][x]
if x != len(self.y[0]) - 1: number += self.y[y][x + 1]
else: number += '.'
if y != len(self.y) - 1 and x != 0: number += self.y[y + 1][x - 1]
else: number += '.'
if y != len(self.y) - 1: number += self.y[y + 1][x]
else: number += '.'
if y != len(self.y) - 1 and x != len(self.y[0]) - 1: number += self.y[y + 1][x + 1]
else: number += '.'
number = number.replace('.', '0')
number = number.replace('#', '1')
return (int(number, 2))
def enhance(self):
new_image = []
self.y.insert(0, '.'*len(self.y[0]))
self.y.append('.'*len(self.y[0]))
for i in range(len(self.y)):
self.y[i] = '.' + self.y[i] + '.'
for i in range(len(self.y)):
new_line = ''
for t in range(len(self.y[i])):
num = self.get_num(i,t)
new_line += algorithm[num]
new_image.append(new_line)
self.y = new_image.copy()
def count(self):
counter = 0
for f in self.y:
for g in f:
if g == '#':
counter += 1
return(counter)
image = img()
with open(sys.argv[1], 'r') as f:
toggle = False
for g in f.readlines():
g = g.strip()
if g == '':
toggle = True
if not toggle:
algorithm = g
if toggle and g != '':
image.addline(g)
image.enhance()
image.enhance()
print(image.count())

102
input14.txt

@ -0,0 +1,102 @@
VFHKKOKKCPBONFHNPHPN
VS -> B
HK -> B
FO -> P
NC -> F
VN -> C
BS -> O
HS -> K
NS -> C
CV -> P
NV -> C
PH -> H
PB -> B
PK -> K
HF -> P
FV -> C
NN -> H
VO -> K
VP -> P
BC -> B
KK -> S
OK -> C
PN -> H
SB -> V
KO -> P
KH -> C
KS -> S
FP -> B
PV -> B
BO -> C
OS -> H
NB -> S
SP -> C
HN -> N
FN -> B
PO -> O
FS -> O
NH -> B
SO -> P
OB -> S
KC -> C
OO -> H
BB -> V
SC -> F
NP -> P
SH -> C
BH -> O
BP -> F
CC -> S
BN -> H
SS -> P
BF -> B
VK -> P
OV -> H
FC -> S
VB -> S
PF -> N
HH -> O
HC -> V
CH -> B
HP -> H
FF -> H
VF -> V
CS -> F
KP -> F
OP -> H
KF -> F
PP -> V
OC -> C
PS -> F
ON -> H
BK -> B
HV -> S
CO -> K
FH -> C
FB -> F
OF -> V
SN -> S
PC -> K
NF -> F
NK -> P
NO -> P
CP -> P
CK -> S
HB -> H
BV -> C
SF -> K
HO -> H
OH -> B
KV -> S
KN -> F
SK -> K
VH -> S
CN -> S
VC -> P
CB -> H
SV -> S
VV -> P
CF -> F
FK -> F
KB -> V

100
input15.txt

@ -0,0 +1,100 @@
8656175343119439947311919179279377257689197682985752287249881788527977345924133329967132199899199876
4281288396984115627338957853913949146812568775798196289991176529889498798259196976277683981565984526
8169838335918963371547591999342191683995972519179929683978126291855319511168245582651697938949414963
9911589184911198759466719191189995157885898771177913669999436998997781742478168921196176418888127932
2332856729917591158935782911513226531793881992469468248251991718456991551657621249229316797949388969
6488738222981127824819626661531168733698299313631126969162927725778914183239351484699921454131481322
3456499223985116399353928681116846939429849384129296119943791119497551946593566977823982927391143399
9297612841849646148511299569971197927971682598351883892842936977227795411959211782251399118676896328
1685688918999598249622886442487951289969917848948815999749154287969297396481891239821819247914959943
2855192597719945162116189119381795158862162959133647579913886639586438893695967226719685616432291318
3893139873964939791913261811173979825213968972939996181992593113695976322782892995939891783998623789
5964671772545917912328949994999514157618987654288269789931394913375316999489275494179994919117119365
3216339828898396212733674969295762442389789119366989996931919596282992864471192938639162947919972647
7879826444123912118829914949989194219763533694839431198212319893181151696157671388992581982743988967
7876122492176935838133394839673532581399474449569117478121989273123412313151952891988698552384251637
8786999269197821985731819155537259938991261919979365751539876866146174376911518943778479997131942722
7239919942299391891898171771589178983916281118889294494829292752139999754571391999826947791975394972
2727617215141959982544247383138498917281833932371546394891963994434638187617528821379728933335772342
6712949984729176138535147942577311588399869767114795759883948915177671474313191789814718292236422124
8689792116597916131779139899373471282726812338914773516383771158691551851991689929199689197212298649
6228175894997691471313338136819712699979449476188196729899628851391971728199959981585798691881191415
9491157288112631922166642933446197292729817888649185515198768537925149995158353829229269894798938589
5199389142294542461535132814487861987422485947698739199748986652229272998164982399192268248929567161
6881119581991538187539159493621999896486112182779617795198955921614753699796171837819179999654231813
6996595113784151975521879415898217119639999975184518599369743127684295298268259495226623211591871888
1779949977648145993713949919359399998812143513534984334127763318649997689919849157137418761137512977
9223292971993981422528813498119387921238194638215641911218326517839287886478991147999899894724396962
7451983891767995938972123465939918261682281929689989464297789895588752221375859586787938391672994381
1579954176878141996516584483611183926131694919877929897576151469657864935819598781814826881644187861
8934595321937914584995177237653199951582515953621782173159453287575529819242531191989113518599339361
3214791137819868237121897913928328682928239268681975567994149694512799167598489194267554981611157817
3161289322443822496458312797912957538349962328948955764669152944278622928929944477635195993465821714
3769985892295265479971729196428585411214871889139731131516448815999122871374996159138497416978598848
4926877381218811127939655759733739111889455359949289979523168797571871445191441719179859376969393872
7159871151274214979637977982939997337182139971896511115912187982698278842961545125121242636339621282
8423118867997391616931374681582965659184916625321536161483641999294114251928796446618889979683993218
6824788915976897879897933391998341399228914119912289149511515799142181679965255395897688149876629889
4794395837416911945432167619882718499181629123717219977896911277339851349162195299228963994667691947
1465122112768881153591399679274839985297692314947884169719151181986711822112796246416415955915718319
7114797833579933611249299912348294873921288555119486979959982462111791467394161781467316779796883775
9767795467854144194712742294766968549329117618283754959873952489784997597669593796889571883816748771
1759974879458746414925558868197241214751687661841649999221178613679929261984417289292556869111324941
9557955429999672993612951916598187741611893112948813816999484953994151249931191942493691497559992158
1469791219499218437828194894539893191199115998162227659757698173867329816328599398544492677817272998
6696472832532492295279572315976884291727999732161858916985514872395367168971969865959582923387918951
9722652752119479169481198119314728131429449798379179119171791999189878174319864498112912224658495939
9581794449119116165418178711351481129242636919987948291451161695541253977174231393582734959682898495
4757727865924728111221629983989222587789999361791192917315287219922119718827676188689966872358484669
1982319969915242121935864989286462118395187369193933592791414764965279817872197863615512262358899223
1811379712999278717898361849316989959114612857179582117839285399618929182259624916911439331479239488
1377519658968884779897799292198595917148591218821239614925192183128211371959295299959221257811239131
2627929612263297913663198357736594275199769318118546371628241929618769991214845296132728799271417791
7576972138942696587693261199467749912936563131454674591315468112333812659454789393699615918167338715
1778985995949591574849625759667137792111923771976687288498928179271746938986792658149697999719931492
1497174992519427759719169714342998311421419197412331399469329847692794191181111339933357161599799597
7158163932199423259572847121198873491117119999919996985599149129919588579223518511588378639685891315
6219361855573892912131718991998196749251949481814844299182119621344738991784149679694476483378729929
1398599388779918861183115593522489331874978727922373471991219247115944295163699192776967648639268659
8246143812623927544154898631717811662213981175534335932638718171969421398421692892399791789186618487
4457134139841167885881924949364884427839314973843366971997383189398399657998961185159781215111619878
2889934549617841969369167119338852267887359654637229634658717722728239549585928482358431813296859898
9968328746979669249145999585143117898196251944175462877716129989773292878848966999379983436559934934
6493994193996595991299891992438695916166928199197254269991979292986895799985938128881229638182945947
7266928918675112795879219714929968471352931229592623394713393869269941181318972192169271548316892574
2174196776119149368951321419512925818641848291921584561885586189445194773817792112569311611884895234
5617593683181229369984148191819568774125471789395181874847932736429929334265516997661987796259692831
7882228973393795938729341656949619511272988446634311621871394678132831899299832311614174939261965429
1131881592984545192978449637151892697525357924197922698921549791127287595929496515499876251183628176
9922954913893559597663824459627321943979599969474976998899879429185892995511392872381956558981867119
5166385448694129439797196837181355547743133114829285275149516986685925813416161972979872853196155916
3292899922794159291851551956738911971988929383861879921354871787791695284999126375594873179426338749
3971894752927483651131869717199971871964396958991799413921821198121691265888799954912311963139425236
5778565318498395151591219315499879273943817921588123199611531989674238272218198865913747444419629892
1148956123134785152496887782841669964225944272953163717879528194631986997718971481186872943816456591
5982998155291779554662769986899318991622943125199743569463317913185991442772122148595119965486877247
1592622221626611159996955945922614981222438358385913259412688295754161193293194979914999974739594393
1735995389872189896282749844299933869588931688619645726996959149185997128397635694766944945458588326
8969839951998899979864239155832982419271118982882915197745124695321464198748765361499779978719441246
6625484228731161195646227911299498172947526327866775111148173468799729895761595437743769876911891521
6742199381937628999297557371399872217983581247138899399239252389649491949578491998528132446741686888
9212328164223895178547771855976415127193137191217188318191949238429129518281919843229126971963111111
8589368771155989697277997492471969978917117589192916193887975787949771588121551699971132275182798898
1321997349438946615383211392181979153964221243634922639112684529286794272849757186396714797832698913
5499455959999492339698359789213323519479768626457859213487938838995348379392231623595879353861382977
4612129999347379911982695394862437936254989311441326295994617191963497895691479282499959828989987571
3953949985681978999897341375236798381973326952579319464522624134872231113676167279146985521828793431
2547232255918288952326674861524529119719429148626615319818611241832868529862499874951986568635799957
2181959929952711246913363617991144311613441799129546223661433628933579819732979148127949974997119951
1369158892917379123998253242599392893199998853969933983592129813969821127281951849151627687114757833
9629699176294886577773394197932998769278865351155516385519239971147785457838922269188195227329168368
1788912961677399663173822433232514884848179868666798987368382881226468481869127998236137881926332779
4811241997249159619241887142461943467819366815858371379792287198271563986876852729186927761281942192
2121993996798639492562961751217922319969898368461919218459919713413366292171628639922554153774327219
3489591127775295131639799492971117993637992434115331278511281997587996291111198123428588991837368589
1283798883941983912985615991541417994114453747887836936186431822993881123911799962749981389292178586
8392631553657936578372199916912973193995216848776811924799769959318889717919172521769363698292447429
9587697134368994212916856845984875416273418561198913859115983139967143891991617853289936814265113512
9111571922348271733199797953979536915998195916688317991255916216419817129423728913622269119972958686
9959599568987335314713638999897919449512991684446347789183915679567141547281548619496728636288445972
8391247911139217869276338998734496391173478717461631572924754792241695917352991662734191814376765142

100
input18.txt

@ -0,0 +1,100 @@
[[[3,[8,6]],[6,1]],[[[1,1],2],[[1,0],0]]]
[[[1,[7,3]],1],9]
[[[2,6],[[3,1],[0,9]]],[[7,[4,8]],[[2,7],3]]]
[[[3,[0,4]],[[8,4],[1,9]]],[7,[2,[5,7]]]]
[[[4,5],[[0,7],1]],[9,[0,4]]]
[[5,[[1,5],[3,6]]],8]
[[3,[[9,3],9]],9]
[2,[[[2,1],[0,5]],[9,9]]]
[[2,[6,9]],[[[4,1],0],[3,4]]]
[[[[6,8],0],[[8,8],9]],[[[4,2],3],[3,[7,3]]]]
[[3,7],9]
[[[[2,5],8],[2,5]],[[0,[5,7]],[[2,5],4]]]
[[[8,[6,6]],0],[4,[[5,6],[8,4]]]]
[[[1,[8,2]],[[0,4],[2,6]]],[[3,4],0]]
[[1,[[9,2],[6,0]]],[[[0,9],5],[[8,0],[1,5]]]]
[[2,[[2,3],[1,8]]],[3,[[7,2],[0,7]]]]
[[5,4],5]
[[[[4,2],[4,8]],[7,3]],[0,[[8,9],6]]]
[[[6,7],0],5]
[[2,[[9,0],[8,4]]],[[[7,4],[3,4]],0]]
[[[9,[8,9]],1],[[5,[6,7]],3]]
[[2,[0,0]],[3,[[2,5],[1,4]]]]
[[0,1],[0,[[8,8],[8,3]]]]
[[[0,2],[2,8]],[1,[[7,0],0]]]
[[[[5,4],3],[[7,5],[2,6]]],[[5,8],[0,1]]]
[0,[0,0]]
[[5,[[5,6],0]],[[[2,7],9],[7,9]]]
[[[[0,8],2],[[2,5],[7,6]]],[[9,7],[[8,7],[9,2]]]]
[[[0,[4,6]],[[6,3],[4,4]]],[8,[[4,8],[4,8]]]]
[[[[8,9],[3,8]],8],[[[7,9],6],[9,[2,7]]]]
[[[[8,9],[1,6]],0],[[[8,7],4],[9,[1,4]]]]
[5,7]
[[[[1,5],[3,6]],[[5,5],4]],[[3,3],[4,[4,0]]]]
[[[0,6],[5,[5,3]]],[[4,[0,0]],8]]
[7,[6,8]]
[[[[8,5],9],[[3,2],7]],[[[6,6],5],2]]
[[[[4,4],[0,4]],9],0]
[[0,[3,[9,3]]],[9,[[8,0],[0,9]]]]
[[[[4,0],0],[1,[1,7]]],[[3,[3,0]],[[1,3],6]]]
[[9,4],[3,[[7,1],6]]]
[[[[3,7],7],1],[[4,3],[[6,9],[6,9]]]]
[[[8,[2,5]],[[8,4],4]],[[[3,4],[6,7]],[5,[8,5]]]]
[2,[4,[[3,2],7]]]
[[[[3,1],[5,6]],[[2,7],7]],[4,[8,[7,4]]]]
[[7,8],[[[3,9],7],2]]
[[[[8,8],[5,8]],[[1,0],[6,0]]],[[[1,2],6],[[4,2],[5,5]]]]
[[1,[0,9]],[[[2,1],1],1]]
[[6,[8,1]],[4,[[7,8],5]]]
[[[1,[1,6]],[1,[5,7]]],[[[2,8],6],0]]
[9,1]
[[[0,[6,5]],[[8,5],2]],[[[2,4],[7,3]],[[1,5],[9,2]]]]
[[[2,7],[0,[3,6]]],[[[1,0],[9,6]],[1,[0,4]]]]
[6,[[[5,9],8],[0,2]]]
[7,[[[9,4],[8,6]],[[1,1],1]]]
[[[2,1],0],8]
[1,[[6,[1,4]],[[0,0],[1,9]]]]
[[[1,[7,9]],2],8]
[[[[0,9],2],[[8,4],9]],[0,[[7,7],[4,8]]]]
[[1,[2,[1,8]]],[[[3,6],[2,1]],[3,[5,0]]]]
[[3,3],[3,5]]
[[[[9,3],[4,3]],[5,[8,1]]],[[6,[5,0]],9]]
[0,[[9,[3,5]],3]]
[[[9,1],0],[[[5,9],[8,0]],[7,[4,8]]]]
[[[[7,7],8],3],[[[6,6],[6,5]],[6,4]]]
[[[[3,7],1],[9,[4,2]]],[[9,[2,5]],[[9,0],5]]]
[5,[[0,2],6]]
[[[[2,7],[5,3]],[1,8]],2]
[[[8,[7,7]],[9,[0,0]]],4]
[[[4,[1,4]],0],[[[8,7],8],[[4,1],7]]]
[[[[0,6],0],[[3,2],[9,8]]],[[9,[4,5]],[[7,7],[0,8]]]]
[[[[6,3],3],[[1,5],7]],[[0,1],[7,7]]]
[[[[2,0],2],[3,[3,5]]],[[[0,8],[8,2]],[[0,6],5]]]
[[[6,[5,3]],[[5,5],9]],[[5,9],[[8,7],[3,7]]]]
[[[[1,7],[3,4]],[9,2]],1]
[[[[8,2],6],1],[[5,[2,7]],[3,9]]]
[5,[5,7]]
[[[[9,8],[3,4]],[[2,5],[5,6]]],[[[2,7],7],[9,[8,7]]]]
[[[1,4],[[6,1],[1,3]]],[1,[7,[1,7]]]]
[[[[1,4],8],[[5,1],8]],[[[1,3],[6,9]],[6,[3,3]]]]
[[[[4,0],[0,7]],[4,5]],[4,2]]
[3,8]
[7,[[[7,6],5],[[6,6],5]]]
[[[5,[0,5]],[4,4]],[3,[[4,2],[7,0]]]]
[[[[7,9],8],[9,6]],[5,0]]
[[[[3,0],[5,2]],1],[[[6,9],[5,3]],[[2,5],[6,3]]]]
[7,[[[7,7],[4,5]],[9,2]]]
[[7,[[4,2],[9,3]]],[7,[6,1]]]
[7,9]
[[[8,[8,1]],[[7,3],1]],[[9,8],[2,[8,3]]]]
[[[9,3],3],3]
[[[8,[5,7]],[[2,1],[1,3]]],[[[3,5],2],0]]
[[[8,8],0],[[1,4],[[8,6],9]]]
[[9,[3,[3,0]]],[1,7]]
[1,[[[8,8],1],[2,[0,5]]]]
[[0,[1,5]],[9,[0,[9,0]]]]
[1,[[[1,1],[8,3]],[1,8]]]
[[5,[[7,7],[3,3]]],[[[6,6],[7,8]],[1,[0,0]]]]
[[[[6,7],1],[0,2]],[[[4,2],[7,6]],[[8,4],[4,9]]]]
[[6,[[3,3],[9,0]]],[1,[[4,5],4]]]
[[[[3,4],7],[9,0]],[[[4,5],1],[[5,1],[9,3]]]]

102
input20.txt

@ -0,0 +1,102 @@
#.#.....##...##..#.#......#.#...#.#.#...###.##......###.##.##..##.#...#.....###.#.....#.#.#...#.#..###.###..###..#..##..###..##..##.##.#..###########.##....#.#......#...#.###..###...#.####..########.#####.#.#..##.##.##..###.##.####.#..##.##..#...#####..#.#.##.##...##..#..##.....###.#.#....####.##.#...##.########.#.##.#.....###....#..###.####....############.#.##...#.####...#...##.#.#..#..#......#..##...#.########.#.#...#####..#..######.#.#.....#####...##.###.#.#.##.........#.#.##..##.#..#..##..##.###.##.##.
#.#...##.#.##.##...#......##....##...#.#....##.##.#.##....###.#####.#......###......#.#.##.####..#.#
#.#...###.#.#.#...##...###....#####.#...#.####..########.#.#.#..#.###..##..#.####....#.#..#..##.####
.....#.######..#.#.....#..#..####.########..#.#.####..#####..##.#..##..##.##.#..###.#.#.#.#...#..###
#.#........#.###.#..######.##..#.##...#.....#.#.......#.##.....#.###.##.#..##..#.##...##...##.####..
#...#.#.##..###..#..####..#####.##...###.#....#..###..#.#....####..####.####..#..###.####.###.#..###
#..###..##.#....#.##..##.#..#.##....#.#.#.##..#.#.##..#..##.....#####..#..##.##.##..#.#####.###.#...
..####..##...#....##.#...#######..#....##.###...#.#.........##........###.#.##....#.#.###...#...###.
#######..#......##...##..###..##.#..##.#...###..##..#.#.##....##...##.#..##..##....#..###...##...#..
.###.....#..#..##....#...#.##.#..#.#.#...#..#...#..#.#.###.####..#.###.###.###.#.#..#....#.#.#.#.##.
...##.#.#.#..#..#..#.#.##..#.....#...#####..#####..#.#..#...##..#..#...###.....#...#.#.#....#..##.##
.#####.##.##..#...###.#....##...###..#..#...#...########..#.#...#.#..####........####...###...##....
.#..#..#.#....##..#.###...#..#.###...##.###.##.#...#####....#.###..#.#..#....#.##..#.......#.....#.#
.#..##..#..####..##.#.#..##..###..#.......#...#...#.####.#.#.#..#.##......#.##.###.###.####.##.#.###
.##..##.#..##..#.##.###...#.#####.#.#.#.##...#..#...##..##...#..###.###.##..##.#######.###....######
....#.#..##...#..#####...##.#.##......#.###.#.#.###..#...###..##.#..#..####..#.#....#..#.####...#..#
.#..##..##...#.####.#####.#######.######.####.......#.#.###.##.#.#.#.#.##.....#....#....#..###....##
###.##..#.#.#.#.#..#######.#.########.#.#.#..####.#####.#.#..##..#..##.....#...#....#.##.##.#....#.#
#..#.####.####.##.####...#.###.#.##......###..##.####..#..####..##.#.#....##..##.######...#..##.....
#.##...#...#..##...#.#......#..######.#.###.####..#######..#.##...#.#...#.##..###.#####..#...#.####.
##.###.#.######.#...#..##.#...#..##.##.....###..#.##.#..#..####....#.##.##..#.#..#.#....#.....####..
.#.##.##.###..#...#.#.#.#.#.......#.####.#####..####.#....##.#...##.##.#.#.##.#..#.###.##..###...#.#
#.###.#.##.#.........#..#.#.#.#..##.#..##.#####.###.#.#..#.#.#..##..###..#.##.####.#..#...###.....##
##..#####.#...#.....###.#.#...##.####..#..###....##...#.##.##.##...#.###..#.##...........###.####.##
.###....###.#..#.#..#..#.###..########..##......########.#..#######...#........#.#######..####..#..#
####......#...#..#...#.######..#.##.#.##....#.##.#.#.##.#....##...###..##....#.#.##.##.....###.#.##.
.#.####.##..##.#.#.#.##.###.##....#..#...#.###.#.#...#.....##..##.####....#..######.#.#.#.##...#...#
...#.##...##..##.###..###....#..##.....#####.#.#..#.....##..##.###..##..##.##.....#.#..##.#..###..#.
..##....####...##.....###.#...#.###...##.#.#..##.###....###.##........#.#..#..##..#.######..##......
###.##.##.#...##.#...###.##.##.######.###.###..###.#....#.#....#.#.#...###..###.#.#...######.#...###
..#.####.########.####.#.#...#..##...##...###..####.###..##..#.##..###..#.####.###..#.#.#.#######..#
###..#.##.##.#..#..#.#..#.###...#...#.##.#####.#.###.#.###.#.##..#...#.#...##...###.....#..###....##
..####.#....####..#.##.....#..#.#.###.###.#.#......#.....####.......##.#.######..####..#######.#..##
.##.#.#..#..###....#....#...##.##.###..##.##...#.######......##....##..#.#.#..##..#####....#.#...#..
##...##..#...#.#######..#.....#..##.....#####..#...##.###.####.###..###...#..###........###.##.#.###
...###.#....#...##.....##.####..##.##.#.#..##.######.#..###.##.....##.####..#..##.###.##..###.###..#
#.#...##....#....#.##....##...##..#.#...######..###.#.#..#.#.###.#####.#..###....#.##...####..####..
#....###.###.#...########.##.##.######.##....#...##.#.#.#..#.##.#.....#..#.....#..........#.##..#...
.#.#.#.#.##.##.###...#.#.#...##...#.##.##..#..#...##...##..#.##.#.##....#.###....####..#..###.#..###
...#.#..##.#..##.#.##.####.#.#...###...#.#.###..########.#...###...###..#..#.###..####..##.#..#...#.
##.#...#######.....#.###..#.#..####.##..##.#..##...#.##..##.#####......######.#.#.##.#..####..#.####
#.......#.#########...#...#####...##.###.#..##..##..#...##..##.#.#.###.#.##..#...#....##..#.#.#...#.
###..###..#...##.#...####.###..##.###..##..##.##.....#.#.#.####.######........#...#####.....#..#####
##.#.#.########..#.#.##.#####..##.###...#...#.#.##...###.#.###..#..##.#......#.#.#.##.#.#.#....###.#
#.##.#..#...##..###..##..#..##..##.###...#.##.##.#.#..........##...##.##..##..#....##.#####..##..#..
.#...##.##.#..#.##....#..##.##...#...####.###..##...#...#.##...######.#.##.#.#.##.####.##..#.###.###
##.#.#..#.#.###.#..#.##.#....#....####..#.#..##.#######..##..#...#..####.#####....#.####.#..#.#.###.
....##.##..#.#####.###.#.###.#.#.#.#..#.###.#..######....##.##.....#.#.#...###..###..#..###....##.##
#.#######.#..#.#.##.##...#.#..###.##.##..#..###...#.#...#..##.##..##.#.#.##.##.#######.#..#.#..#.#.#
###.....#####..####..#...#..##.#....##.##...##...##..###...#..##..##..####.#.....##.####..#...##....
####..##..##.#...#.###.##...###.#..#...##.##.#...#.##....####.#.#..#...##..##.##..###.......#..#..#.
#.#.#####..#....#.#...#..##.##..##..#.####..###.####.####.#####.#.#..###.##....#....#.#.###.#.#..##.
...##...#.#.#####.#.#....##.##..#...##...........#.#....#.##.##.....##..###...#.#####..........##.##
.#..#..#.#...#.........####....##........##...#...#######.####.###.###...#....###..#.###.##.#.####.#
..#.#.....#...###.####......###.#..#.#.#.#...####...#####.#..#....#.#.#....#.##.###....#..#....##.##
##.#...##....###.#......####.#.####.##...#..#.#.#.#...#####.#..#..##.#.#...#.####....###.####.#.#.##
.#.#..#....#.####.#..#.###..#.#.#.#.#.###...#.##.##.#.##...####..######....####...##.##.#..##.#.#..#
..##.#...##.####..#.###..##..#.###.#.##..##.###.#.#####..#.##.#.....#.#####.####..#.#.######.#.##.#.
#.....##..###..###.....###.##.###.#..##.#..##.###....#..#.#.##....#.##.##.#...###.###.#......#..#...
.##.#..#...#...#.#..##.....#..#.###....###..#.##...#.##.#.##..##......#.#.#.####.#..#..##...##..##.#
####...##...#......##.##..#######....###.##.#.###.#.#.###...####..#..#.#.##.........#.##.#....#####.
.####.#####..##..###..#.##.##.####.......#.###.#####.#..#...#..#..####.#.....#.####.#.....###...####
#.##......#.#.#.##....#.#.##..#...#.#.#..#...##..#.##.##..#..#####..###.##.#...##...#..#...##.##..#.
.##.#.#.###..###.##....#...###...####...####..##.###.####.###.#..#.###.#..#.....#.##.#..#.##.#.#.#.#
...#.###.#..#..#.###.#....##..##.#..###.######.#...##..#.#...###.....#.###.#.#....##...##.###.#.####
.#..#..#....###..##..#....##.##..####.#.#.#..#.######....####.##.##....##.#.#.####.#..#.##.##....#..
#..##.#...#.###..#.###..###..#.##.#.######.#.#.####....###.##....#.##.#......##.##...##....#.#.###.#
#...##.#.####...#######..#....##.#...##..#.#....#.#.#####.####.##...#.###.##.#.#.##...##.#....##..##
....#.##.#.##.##.#.#..###...##.#.#.#....#...#..........###.#####.##...##..#..#.##.#...#..###..#####.
###..###.##..#.###.#.#.#...##.#.###.##.###...##.###.....####.#...##.#.#.#..#.##...#.....#..#.#.#...#
####...#.####.#.#.#..#.##.##.##.#.#.####...#...#.#..###....##.##..##.###...##.#...#####.###.#..#....
##..##...###..###.#.###.##.####.#..#.#..####.##.#...#..#..#.....##.#.#####...##.....#.#.#..#..##..#.
.....#......#..##..#...#.#.#.######....###.##.##..#.###...#...#.####.##.##.###.#.######.#..#.#.##...
#.#.#.###........#..#.#.#.#....##..##..###...##.#.##.#..#######.#..###.###.#.###.###.#.#.#.....##..#
#.##....####.......#..##.####.#.##..###.##.###.#.#.###...###.....######...######.#.....###.##.......
#.##..#...#..#..#....#.##...#..#.###...#...#########.#.#...#.....#...#..#.#...#.#.#...#.###.####..##
.#..##........###.#.#....#.......##.#..#.#.#.##.......#.#.#.#..#.#.....#....#.###.#.##...###.....#..
.#.#...##...#....#.##..##.#...#.##..#..##.#..###.#####..##.#.##.####.####.###...##....##......###..#
#..##....##.###.##.....#.#.....#.#...#..##....##.###.#....###.....######.#.##.###..#..#.#...#.....#.
....#.####.....#..#..#...#.###.#####..##...#.#..###.#...#...##.###.##..#.######..####.#.#....#.#..##
##.#..##.#.#.##..##..#...###..##.##..#.###..#...###..##.#.###.####...#..#.#######.##.###.###.#.#..#.
...##...##.#.#.##.#.##.###..##...##.#..#..##.##.##.##.#.####..##.######....#..#.#.#....###.#.##.#.#.
.#.....#.###...##.#.##.#..###.##..####.###..#.#.....#..##.#.#..##...##.#..#.##..#########..#.#.##.#.
####.#..#.#..##...#..#.##..#..#...#.###.....#..##...#..####....#######.....#.##.##..##...#.##..####.
########...#.#.####..####.#.#.#..##.#.#.##...#...#..#...#..###.#.#..##..#####.#.#.#.##.#.###...#.##.
.#....#..######.#.#.#..##.#.#...#####....##..##.##.#####....#.##..#..#.#.#.###..#.####.###.........#
...####..##......###..#..###..#.#.###.#...#..####.#.#..###....#..##.####.#..#.....#.........##..###.
.####...##...#####.##.##...##...##..##...#.#####...#...##...#.####..####.###.....##.##...##.#######.
##..####....#.#..#.#....##..#####....#.#...#.####..#######..##.#####.#.#.#.##.#.#..#...#.###.##.#.##
#.####....#..##########...###.#..#####.#.#.##....#..#....######.....#...#.##.##.#.##..#.###..###..#.
##.#.##.###..#.###.....##..#.###.#....#####.###...#.#.##.#..#.###.#.#.#####.#.##.##.##.#.#.###.###..
.###.#.#.##.######.#.#..##.#..####..#....##......#...##.##.#.......#.#.#.####.#.#.##....##.####..#.#
####..#...##....#.#.#....#.#####...#..#....##..#..####...#..###...........####.###.###......#..##..#
..##.####.##....####....#.#.####..#...###.#....#.##.###.#.##..####.#..###..#...#..#####..#...##...#.
...#..#....#.#..##.#.####....#..####...##.#..#####.###..#.##..###.######...#...#...######.##....##..
..#########.#####.#####.###.##.#.###.###..#.#.#.#.###.#...###........####..#####.#.##.##.#..#..#.##.
#..###.##.###.#...#.#.#.##.###........#.#.#.#..#..##.##.#.....#.#.....##...#..#.##..#..#..#......#.#
...##..#...##.....##...####.....#.##..###.....#..#.###.#..#.#...#..#.#.....###.###.##.#.#.#..#.#....
#...#...#.#.#...#####.####..#....##...##.##.##.#...#.#.#..#...##....#...###.#.##.##....########..#..
.#.####....#.#.....########.#....######.#.#######...##..#.###.#.###..###.#..###....#.#.###.....###.#
..#.##.##....#..#...#..#.#.#...###...#..#.#.#.####.#.#####.####....##..#..###.#.#..####....##.####..

18
testdata14.txt

@ -0,0 +1,18 @@
NNCB
CH -> B
HH -> N
CB -> H
NH -> C
HB -> C
HC -> B
HN -> C
NN -> C
BH -> H
NC -> B
NB -> B
BN -> B
BB -> N
BC -> B
CC -> N
CN -> C

50
testdata15-2.txt

@ -0,0 +1,50 @@
11637517422274862853338597396444961841755517295286
13813736722492484783351359589446246169155735727126
21365113283247622439435873354154698446526571955763
36949315694715142671582625378269373648937148475914
74634171118574528222968563933317967414442817852555
13191281372421239248353234135946434524615754563572
13599124212461123532357223464346833457545794456865
31254216394236532741534764385264587549637569865174
12931385212314249632342535174345364628545647573965
23119445813422155692453326671356443778246755488935
22748628533385973964449618417555172952866628316397
24924847833513595894462461691557357271266846838237
32476224394358733541546984465265719557637682166874
47151426715826253782693736489371484759148259586125
85745282229685639333179674144428178525553928963666
24212392483532341359464345246157545635726865674683
24611235323572234643468334575457944568656815567976
42365327415347643852645875496375698651748671976285
23142496323425351743453646285456475739656758684176
34221556924533266713564437782467554889357866599146
33859739644496184175551729528666283163977739427418
35135958944624616915573572712668468382377957949348
43587335415469844652657195576376821668748793277985
58262537826937364893714847591482595861259361697236
96856393331796741444281785255539289636664139174777
35323413594643452461575456357268656746837976785794
35722346434683345754579445686568155679767926678187
53476438526458754963756986517486719762859782187396
34253517434536462854564757396567586841767869795287
45332667135644377824675548893578665991468977611257
44961841755517295286662831639777394274188841538529
46246169155735727126684683823779579493488168151459
54698446526571955763768216687487932779859814388196
69373648937148475914825958612593616972361472718347
17967414442817852555392896366641391747775241285888
46434524615754563572686567468379767857948187896815
46833457545794456865681556797679266781878137789298
64587549637569865174867197628597821873961893298417
45364628545647573965675868417678697952878971816398
56443778246755488935786659914689776112579188722368
55172952866628316397773942741888415385299952649631
57357271266846838237795794934881681514599279262561
65719557637682166874879327798598143881961925499217
71484759148259586125936169723614727183472583829458
28178525553928963666413917477752412858886352396999
57545635726865674683797678579481878968159298917926
57944568656815567976792667818781377892989248891319
75698651748671976285978218739618932984172914319528
56475739656758684176786979528789718163989182927419
67554889357866599146897761125791887223681299833479

10
testdata15.txt

@ -0,0 +1,10 @@
1163751742
1381373672
2136511328
3694931569
7463417111
1319128137
1359912421
3125421639
1293138521
2311944581

10
testdata18-2.txt

@ -0,0 +1,10 @@
[[[0,[5,8]],[[1,7],[9,6]]],[[4,[1,2]],[[1,4],2]]]
[[[5,[2,8]],4],[5,[[9,9],0]]]
[6,[[[6,2],[5,6]],[[7,6],[4,7]]]]
[[[6,[0,7]],[0,9]],[4,[9,[9,0]]]]
[[[7,[6,4]],[3,[1,3]]],[[[5,5],1],9]]
[[6,[[7,3],[3,2]]],[[[3,8],[5,7]],4]]
[[[[5,4],[7,7]],8],[[8,3],8]]
[[9,3],[[9,9],[6,[4,9]]]]
[[2,[[7,7],7]],[[5,8],[[9,3],[0,2]]]]
[[[[5,2],5],[8,[3,7]]],[[5,[7,5]],[4,4]]]

2
testdata18-3.txt

@ -0,0 +1,2 @@
[[[0,[4,5]],[0,0]],[[[4,5],[2,6]],[9,5]]]
[7,[[[3,7],[4,3]],[[6,3],[8,8]]]]

10
testdata18.txt

@ -0,0 +1,10 @@
[[[0,[4,5]],[0,0]],[[[4,5],[2,6]],[9,5]]]
[7,[[[3,7],[4,3]],[[6,3],[8,8]]]]
[[2,[[0,8],[3,4]]],[[[6,7],1],[7,[1,6]]]]
[[[[2,4],7],[6,[0,5]]],[[[6,8],[2,8]],[[2,1],[4,5]]]]
[7,[5,[[3,8],[1,4]]]]
[[2,[2,2]],[8,[8,1]]]
[2,9]
[1,[[[9,3],9],[[9,0],[0,7]]]]
[[[5,[7,4]],7],1]
[[[[4,2],2],6],[8,7]]

7
testdata20.txt

@ -0,0 +1,7 @@
..#.#..#####.#.#.#.###.##.....###.##.#..###.####..#####..#....#..#..##..###..######.###...####..#..#####..##..#.#####...##.#.#..#.##..#.#......#.###.######.###.####...#.##.##..#..#..#####.....#.#....###..#.##......#.....#..#..#..##..#...##.######.####.####.#.#...#.......#..#.#.#...####.##.#......#..#...##.#.##..#...##.#.##..###.#......#.#.......#.#.#.####.###.##...#.....####.#..#..#.##.#....##..#.####....##...##..#...#......#.#.......#.......##..####..#...#.#.#...##..#.#..###..#####........#..####......#..#
#..#.
#....
##..#
..#..
..###
Loading…
Cancel
Save