// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Traits, helpers, and type definitions for core I/O functionality. //! //! The `std::io` module contains a number of common things you'll need //! when doing input and output. The most core part of this module is //! the [`Read`][read] and [`Write`][write] traits, which provide the //! most general interface for reading and writing input and output. //! //! [read]: trait.Read.html //! [write]: trait.Write.html //! //! # Read and Write //! //! Because they are traits, `Read` and `Write` are implemented by a number //! of other types, and you can implement them for your types too. As such, //! you'll see a few different types of I/O throughout the documentation in //! this module: `File`s, `TcpStream`s, and sometimes even `Vec`s. For //! example, `Read` adds a `read()` method, which we can use on `File`s: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! use std::fs::File; //! //! # fn foo() -> io::Result<()> { //! let mut f = try!(File::open("foo.txt")); //! let mut buffer = [0; 10]; //! //! // read up to 10 bytes //! try!(f.read(&mut buffer)); //! //! println!("The bytes: {:?}", buffer); //! # Ok(()) //! # } //! ``` //! //! `Read` and `Write` are so important, implementors of the two traits have a //! nickname: readers and writers. So you'll sometimes see 'a reader' instead //! of 'a type that implements the `Read` trait'. Much easier! //! //! ## Seek and BufRead //! //! Beyond that, there are two important traits that are provided: [`Seek`][seek] //! and [`BufRead`][bufread]. Both of these build on top of a reader to control //! how the reading happens. `Seek` lets you control where the next byte is //! coming from: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! use std::io::SeekFrom; //! use std::fs::File; //! //! # fn foo() -> io::Result<()> { //! let mut f = try!(File::open("foo.txt")); //! let mut buffer = [0; 10]; //! //! // skip to the last 10 bytes of the file //! try!(f.seek(SeekFrom::End(-10))); //! //! // read up to 10 bytes //! try!(f.read(&mut buffer)); //! //! println!("The bytes: {:?}", buffer); //! # Ok(()) //! # } //! ``` //! //! [seek]: trait.Seek.html //! [bufread]: trait.BufRead.html //! //! `BufRead` uses an internal buffer to provide a number of other ways to read, but //! to show it off, we'll need to talk about buffers in general. Keep reading! //! //! ## BufReader and BufWriter //! //! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be //! making near-constant calls to the operating system. To help with this, //! `std::io` comes with two structs, `BufReader` and `BufWriter`, which wrap //! readers and writers. The wrapper uses a buffer, reducing the number of //! calls and providing nicer methods for accessing exactly what you want. //! //! For example, `BufReader` works with the `BufRead` trait to add extra //! methods to any reader: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! use std::io::BufReader; //! use std::fs::File; //! //! # fn foo() -> io::Result<()> { //! let f = try!(File::open("foo.txt")); //! let mut reader = BufReader::new(f); //! let mut buffer = String::new(); //! //! // read a line into buffer //! try!(reader.read_line(&mut buffer)); //! //! println!("{}", buffer); //! # Ok(()) //! # } //! ``` //! //! `BufWriter` doesn't add any new ways of writing; it just buffers every call //! to [`write()`][write()]: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! use std::io::BufWriter; //! use std::fs::File; //! //! # fn foo() -> io::Result<()> { //! let f = try!(File::create("foo.txt")); //! { //! let mut writer = BufWriter::new(f); //! //! // write a byte to the buffer //! try!(writer.write(&[42])); //! //! } // the buffer is flushed once writer goes out of scope //! //! # Ok(()) //! # } //! ``` //! //! [write()]: trait.Write.html#tymethod.write //! //! ## Standard input and output //! //! A very common source of input is standard input: //! //! ``` //! use std::io; //! //! # fn foo() -> io::Result<()> { //! let mut input = String::new(); //! //! try!(io::stdin().read_line(&mut input)); //! //! println!("You typed: {}", input.trim()); //! # Ok(()) //! # } //! ``` //! //! And a very common source of output is standard output: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! //! # fn foo() -> io::Result<()> { //! try!(io::stdout().write(&[42])); //! # Ok(()) //! # } //! ``` //! //! Of course, using `io::stdout()` directly is less common than something like //! `println!`. //! //! ## Iterator types //! //! A large number of the structures provided by `std::io` are for various //! ways of iterating over I/O. For example, `Lines` is used to split over //! lines: //! //! ``` //! use std::io; //! use std::io::prelude::*; //! use std::io::BufReader; //! use std::fs::File; //! //! # fn foo() -> io::Result<()> { //! let f = try!(File::open("foo.txt")); //! let reader = BufReader::new(f); //! //! for line in reader.lines() { //! println!("{}", try!(line)); //! } //! //! # Ok(()) //! # } //! ``` //! //! ## Functions //! //! There are a number of [functions][functions-list] that offer access to various //! features. For example, we can use three of these functions to copy everything //! from standard input to standard output: //! //! ``` //! use std::io; //! //! # fn foo() -> io::Result<()> { //! try!(io::copy(&mut io::stdin(), &mut io::stdout())); //! # Ok(()) //! # } //! ``` //! //! [functions-list]: #functions-1 //! //! ## io::Result //! //! Last, but certainly not least, is [`io::Result`][result]. This type is used //! as the return type of many `std::io` functions that can cause an error, and //! can be returned from your own functions as well. Many of the examples in this //! module use the [`try!`][try] macro: //! //! ``` //! use std::io; //! //! fn read_input() -> io::Result<()> { //! let mut input = String::new(); //! //! try!(io::stdin().read_line(&mut input)); //! //! println!("You typed: {}", input.trim()); //! //! Ok(()) //! } //! ``` //! //! The return type of `read_input()`, `io::Result<()>`, is a very common type //! for functions which don't have a 'real' return value, but do want to return //! errors if they happen. In this case, the only purpose of this function is //! to read the line and print it, so we use `()`. //! //! [result]: type.Result.html //! [try]: ../macro.try.html //! //! ## Platform-specific behavior //! //! Many I/O functions throughout the standard library are documented to indicate //! what various library or syscalls they are delegated to. This is done to help //! applications both understand what's happening under the hood as well as investigate //! any possibly unclear semantics. Note, however, that this is informative, not a binding //! contract. The implementation of many of these functions are subject to change over //! time and may call fewer or more syscalls/library functions. use cmp; use rustc_unicode::str as core_str; use error as std_error; use fmt; use result; use str; use memchr; pub use self::buffered::{BufReader, BufWriter, LineWriter}; pub use self::buffered::IntoInnerError; pub use self::cursor::Cursor; pub use self::error::{Result, Error, ErrorKind}; pub use self::util::{copy, sink, Sink, empty, Empty, repeat, Repeat}; pub use self::print::{STDOUT, _print}; //pub use self::stdio::{stdin, stdout, stderr, _print, Stdin, Stdout, Stderr}; //pub use self::stdio::{StdoutLock, StderrLock, StdinLock}; #[doc(no_inline, hidden)] //pub use self::stdio::{set_panic, set_print}; pub mod prelude; mod buffered; mod cursor; mod error; mod impls; mod util; mod print; //mod lazy; //mod stdio; const DEFAULT_BUF_SIZE: usize = 8 * 1024; // A few methods below (read_to_string, read_line) will append data into a // `String` buffer, but we need to be pretty careful when doing this. The // implementation will just call `.as_mut_vec()` and then delegate to a // byte-oriented reading method, but we must ensure that when returning we never // leave `buf` in a state such that it contains invalid UTF-8 in its bounds. // // To this end, we use an RAII guard (to protect against panics) which updates // the length of the string when it is dropped. This guard initially truncates // the string to the prior length and only after we've validated that the // new contents are valid UTF-8 do we allow it to set a longer length. // // The unsafety in this function is twofold: // // 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8 // checks. // 2. We're passing a raw buffer to the function `f`, and it is expected that // the function only *appends* bytes to the buffer. We'll get undefined // behavior if existing bytes are overwritten to have non-UTF-8 data. fn append_to_string(buf: &mut String, f: F) -> Result where F: FnOnce(&mut Vec) -> Result { struct Guard<'a> { s: &'a mut Vec, len: usize } impl<'a> Drop for Guard<'a> { fn drop(&mut self) { unsafe { self.s.set_len(self.len); } } } unsafe { let mut g = Guard { len: buf.len(), s: buf.as_mut_vec() }; let ret = f(g.s); if str::from_utf8(&g.s[g.len..]).is_err() { ret.and_then(|_| { Err(Error::new(ErrorKind::InvalidData, "stream did not contain valid UTF-8")) }) } else { g.len = g.s.len(); ret } } } // This uses an adaptive system to extend the vector when it fills. We want to // avoid paying to allocate and zero a huge chunk of memory if the reader only // has 4 bytes while still making large reads if the reader does have a ton // of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every // time is 4,500 times (!) slower than this if the reader has a very small // amount of data to return. fn read_to_end(r: &mut R, buf: &mut Vec) -> Result { let start_len = buf.len(); let mut len = start_len; let mut new_write_size = 16; let ret; loop { if len == buf.len() { if new_write_size < DEFAULT_BUF_SIZE { new_write_size *= 2; } buf.resize(len + new_write_size, 0); } match r.read(&mut buf[len..]) { Ok(0) => { ret = Ok(len - start_len); break; } Ok(n) => len += n, Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => { ret = Err(e); break; } } } buf.truncate(len); ret } /// The `Read` trait allows for reading bytes from a source. /// /// Implementors of the `Read` trait are sometimes called 'readers'. /// /// Readers are defined by one required method, `read()`. Each call to `read` /// will attempt to pull bytes from this source into a provided buffer. A /// number of other methods are implemented in terms of `read()`, giving /// implementors a number of ways to read bytes while only needing to implement /// a single method. /// /// Readers are intended to be composable with one another. Many implementors /// throughout `std::io` take and provide types which implement the `Read` /// trait. /// /// Please note that each call to `read` may involve a system call, and /// therefore, using something that implements [`BufRead`][bufread], such as /// [`BufReader`][bufreader], will be more efficient. /// /// [bufread]: trait.BufRead.html /// [bufreader]: struct.BufReader.html /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = [0; 10]; /// /// // read up to 10 bytes /// try!(f.read(&mut buffer)); /// /// let mut buffer = vec![0; 10]; /// // read the whole file /// try!(f.read_to_end(&mut buffer)); /// /// // read into a String, so that you don't need to do the conversion. /// let mut buffer = String::new(); /// try!(f.read_to_string(&mut buffer)); /// /// // and more! See the other methods for more details. /// # Ok(()) /// # } /// ``` pub trait Read { /// Pull some bytes from this source into the specified buffer, returning /// how many bytes were read. /// /// This function does not provide any guarantees about whether it blocks /// waiting for data, but if an object needs to block for a read but cannot /// it will typically signal this via an `Err` return value. /// /// If the return value of this method is `Ok(n)`, then it must be /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates /// that the buffer `buf` has been filled in with `n` bytes of data from this /// source. If `n` is `0`, then it can indicate one of two scenarios: /// /// 1. This reader has reached its "end of file" and will likely no longer /// be able to produce bytes. Note that this does not mean that the /// reader will *always* no longer be able to produce bytes. /// 2. The buffer specified was 0 bytes in length. /// /// No guarantees are provided about the contents of `buf` when this /// function is called, implementations cannot rely on any property of the /// contents of `buf` being true. It is recommended that implementations /// only write data to `buf` instead of reading its contents. /// /// # Errors /// /// If this function encounters any form of I/O or other error, an error /// variant will be returned. If an error is returned then it must be /// guaranteed that no bytes were read. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = [0; 10]; /// /// // read 10 bytes /// try!(f.read(&mut buffer[..])); /// # Ok(()) /// # } /// ``` fn read(&mut self, buf: &mut [u8]) -> Result; /// Read all bytes until EOF in this source, placing them into `buf`. /// /// All bytes read from this source will be appended to the specified buffer /// `buf`. This function will continuously call `read` to append more data to /// `buf` until `read` returns either `Ok(0)` or an error of /// non-`ErrorKind::Interrupted` kind. /// /// If successful, this function will return the total number of bytes read. /// /// # Errors /// /// If this function encounters an error of the kind /// `ErrorKind::Interrupted` then the error is ignored and the operation /// will continue. /// /// If any other read error is encountered then this function immediately /// returns. Any bytes which have already been read will be appended to /// `buf`. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = Vec::new(); /// /// // read the whole file /// try!(f.read_to_end(&mut buffer)); /// # Ok(()) /// # } /// ``` fn read_to_end(&mut self, buf: &mut Vec) -> Result { read_to_end(self, buf) } /// Read all bytes until EOF in this source, placing them into `buf`. /// /// If successful, this function returns the number of bytes which were read /// and appended to `buf`. /// /// # Errors /// /// If the data in this stream is *not* valid UTF-8 then an error is /// returned and `buf` is unchanged. /// /// See [`read_to_end()`][readtoend] for other error semantics. /// /// [readtoend]: #method.read_to_end /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = String::new(); /// /// try!(f.read_to_string(&mut buffer)); /// # Ok(()) /// # } /// ``` fn read_to_string(&mut self, buf: &mut String) -> Result { // Note that we do *not* call `.read_to_end()` here. We are passing // `&mut Vec` (the raw contents of `buf`) into the `read_to_end` // method to fill it up. An arbitrary implementation could overwrite the // entire contents of the vector, not just append to it (which is what // we are expecting). // // To prevent extraneously checking the UTF-8-ness of the entire buffer // we pass it to our hardcoded `read_to_end` implementation which we // know is guaranteed to only read data into the end of the buffer. append_to_string(buf, |b| read_to_end(self, b)) } /// Read the exact number of bytes required to fill `buf`. /// /// This function reads as many bytes as necessary to completely fill the /// specified buffer `buf`. /// /// No guarantees are provided about the contents of `buf` when this /// function is called, implementations cannot rely on any property of the /// contents of `buf` being true. It is recommended that implementations /// only write data to `buf` instead of reading its contents. /// /// # Errors /// /// If this function encounters an error of the kind /// `ErrorKind::Interrupted` then the error is ignored and the operation /// will continue. /// /// If this function encounters an "end of file" before completely filling /// the buffer, it returns an error of the kind `ErrorKind::UnexpectedEof`. /// The contents of `buf` are unspecified in this case. /// /// If any other read error is encountered then this function immediately /// returns. The contents of `buf` are unspecified in this case. /// /// If this function returns an error, it is unspecified how many bytes it /// has read, but it will never read more than would be necessary to /// completely fill the buffer. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = [0; 10]; /// /// // read exactly 10 bytes /// try!(f.read_exact(&mut buffer)); /// # Ok(()) /// # } /// ``` fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> { while !buf.is_empty() { match self.read(buf) { Ok(0) => break, Ok(n) => { let tmp = buf; buf = &mut tmp[n..]; } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } if !buf.is_empty() { Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer")) } else { Ok(()) } } /// Creates a "by reference" adaptor for this instance of `Read`. /// /// The returned adaptor also implements `Read` and will simply borrow this /// current reader. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::Read; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = Vec::new(); /// let mut other_buffer = Vec::new(); /// /// { /// let reference = f.by_ref(); /// /// // read at most 5 bytes /// try!(reference.take(5).read_to_end(&mut buffer)); /// /// } // drop our &mut reference so we can use f again /// /// // original file still usable, read the rest /// try!(f.read_to_end(&mut other_buffer)); /// # Ok(()) /// # } /// ``` fn by_ref(&mut self) -> &mut Self where Self: Sized { self } /// Transforms this `Read` instance to an `Iterator` over its bytes. /// /// The returned type implements `Iterator` where the `Item` is `Result`. The yielded item is `Ok` if a byte was successfully read and /// `Err` otherwise for I/O errors. EOF is mapped to returning `None` from /// this iterator. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// /// for byte in f.bytes() { /// println!("{}", byte.unwrap()); /// } /// # Ok(()) /// # } /// ``` fn bytes(self) -> Bytes where Self: Sized { Bytes { inner: self } } /// Transforms this `Read` instance to an `Iterator` over `char`s. /// /// This adaptor will attempt to interpret this reader as a UTF-8 encoded /// sequence of characters. The returned iterator will return `None` once /// EOF is reached for this reader. Otherwise each element yielded will be a /// `Result` where `E` may contain information about what I/O error /// occurred or where decoding failed. /// /// Currently this adaptor will discard intermediate data read, and should /// be avoided if this is not desired. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// #![feature(io)] /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// /// for c in f.chars() { /// println!("{}", c.unwrap()); /// } /// # Ok(()) /// # } /// ``` fn chars(self) -> Chars where Self: Sized { Chars { inner: self } } /// Creates an adaptor which will chain this stream with another. /// /// The returned `Read` instance will first read all bytes from this object /// until EOF is encountered. Afterwards the output is equivalent to the /// output of `next`. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f1 = try!(File::open("foo.txt")); /// let mut f2 = try!(File::open("bar.txt")); /// /// let mut handle = f1.chain(f2); /// let mut buffer = String::new(); /// /// // read the value into a String. We could use any Read method here, /// // this is just one example. /// try!(handle.read_to_string(&mut buffer)); /// # Ok(()) /// # } /// ``` fn chain(self, next: R) -> Chain where Self: Sized { Chain { first: self, second: next, done_first: false } } /// Creates an adaptor which will read at most `limit` bytes from it. /// /// This function returns a new instance of `Read` which will read at most /// `limit` bytes, after which it will always return EOF (`Ok(0)`). Any /// read errors will not count towards the number of bytes read and future /// calls to `read` may succeed. /// /// # Examples /// /// [`File`][file]s implement `Read`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// let mut buffer = [0; 5]; /// /// // read at most five bytes /// let mut handle = f.take(5); /// /// try!(handle.read(&mut buffer)); /// # Ok(()) /// # } /// ``` fn take(self, limit: u64) -> Take where Self: Sized { Take { inner: self, limit: limit } } } /// A trait for objects which are byte-oriented sinks. /// /// Implementors of the `Write` trait are sometimes called 'writers'. /// /// Writers are defined by two required methods, `write()` and `flush()`: /// /// * The `write()` method will attempt to write some data into the object, /// returning how many bytes were successfully written. /// /// * The `flush()` method is useful for adaptors and explicit buffers /// themselves for ensuring that all buffered data has been pushed out to the /// 'true sink'. /// /// Writers are intended to be composable with one another. Many implementors /// throughout `std::io` take and provide types which implement the `Write` /// trait. /// /// # Examples /// /// ``` /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = try!(File::create("foo.txt")); /// /// try!(buffer.write(b"some bytes")); /// # Ok(()) /// # } /// ``` pub trait Write { /// Write a buffer into this object, returning how many bytes were written. /// /// This function will attempt to write the entire contents of `buf`, but /// the entire write may not succeed, or the write may also generate an /// error. A call to `write` represents *at most one* attempt to write to /// any wrapped object. /// /// Calls to `write` are not guaranteed to block waiting for data to be /// written, and a write which would otherwise block can be indicated through /// an `Err` variant. /// /// If the return value is `Ok(n)` then it must be guaranteed that /// `0 <= n <= buf.len()`. A return value of `0` typically means that the /// underlying object is no longer able to accept bytes and will likely not /// be able to in the future as well, or that the buffer provided is empty. /// /// # Errors /// /// Each call to `write` may generate an I/O error indicating that the /// operation could not be completed. If an error is returned then no bytes /// in the buffer were written to this writer. /// /// It is **not** considered an error if the entire buffer could not be /// written to this writer. /// /// # Examples /// /// ``` /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = try!(File::create("foo.txt")); /// /// try!(buffer.write(b"some bytes")); /// # Ok(()) /// # } /// ``` fn write(&mut self, buf: &[u8]) -> Result; /// Flush this output stream, ensuring that all intermediately buffered /// contents reach their destination. /// /// # Errors /// /// It is considered an error if not all bytes could be written due to /// I/O errors or EOF being reached. /// /// # Examples /// /// ``` /// use std::io::prelude::*; /// use std::io::BufWriter; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = BufWriter::new(try!(File::create("foo.txt"))); /// /// try!(buffer.write(b"some bytes")); /// try!(buffer.flush()); /// # Ok(()) /// # } /// ``` fn flush(&mut self) -> Result<()>; /// Attempts to write an entire buffer into this write. /// /// This method will continuously call `write` while there is more data to /// write. This method will not return until the entire buffer has been /// successfully written or an error occurs. The first error generated from /// this method will be returned. /// /// # Errors /// /// This function will return the first error that `write` returns. /// /// # Examples /// /// ``` /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = try!(File::create("foo.txt")); /// /// try!(buffer.write_all(b"some bytes")); /// # Ok(()) /// # } /// ``` fn write_all(&mut self, mut buf: &[u8]) -> Result<()> { while !buf.is_empty() { match self.write(buf) { Ok(0) => return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer")), Ok(n) => buf = &buf[n..], Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(()) } /// Writes a formatted string into this writer, returning any error /// encountered. /// /// This method is primarily used to interface with the /// [`format_args!`][formatargs] macro, but it is rare that this should /// explicitly be called. The [`write!`][write] macro should be favored to /// invoke this method instead. /// /// [formatargs]: ../macro.format_args.html /// [write]: ../macro.write.html /// /// This function internally uses the [`write_all`][writeall] method on /// this trait and hence will continuously write data so long as no errors /// are received. This also means that partial writes are not indicated in /// this signature. /// /// [writeall]: #method.write_all /// /// # Errors /// /// This function will return any I/O error reported while formatting. /// /// # Examples /// /// ``` /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = try!(File::create("foo.txt")); /// /// // this call /// try!(write!(buffer, "{:.*}", 2, 1.234567)); /// // turns into this: /// try!(buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))); /// # Ok(()) /// # } /// ``` fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<()> { // Create a shim which translates a Write to a fmt::Write and saves // off I/O errors. instead of discarding them struct Adaptor<'a, T: ?Sized + 'a> { inner: &'a mut T, error: Result<()>, } impl<'a, T: Write + ?Sized> fmt::Write for Adaptor<'a, T> { fn write_str(&mut self, s: &str) -> fmt::Result { match self.inner.write_all(s.as_bytes()) { Ok(()) => Ok(()), Err(e) => { self.error = Err(e); Err(fmt::Error) } } } } let mut output = Adaptor { inner: self, error: Ok(()) }; match fmt::write(&mut output, fmt) { Ok(()) => Ok(()), Err(..) => { // check if the error came from the underlying `Write` or not if output.error.is_err() { output.error } else { Err(Error::new(ErrorKind::Other, "formatter error")) } } } } /// Creates a "by reference" adaptor for this instance of `Write`. /// /// The returned adaptor also implements `Write` and will simply borrow this /// current writer. /// /// # Examples /// /// ``` /// use std::io::Write; /// use std::fs::File; /// /// # fn foo() -> std::io::Result<()> { /// let mut buffer = try!(File::create("foo.txt")); /// /// let reference = buffer.by_ref(); /// /// // we can use reference just like our original buffer /// try!(reference.write_all(b"some bytes")); /// # Ok(()) /// # } /// ``` fn by_ref(&mut self) -> &mut Self where Self: Sized { self } } /// The `Seek` trait provides a cursor which can be moved within a stream of /// bytes. /// /// The stream typically has a fixed size, allowing seeking relative to either /// end or the current offset. /// /// # Examples /// /// [`File`][file]s implement `Seek`: /// /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// use std::io::SeekFrom; /// /// # fn foo() -> io::Result<()> { /// let mut f = try!(File::open("foo.txt")); /// /// // move the cursor 42 bytes from the start of the file /// try!(f.seek(SeekFrom::Start(42))); /// # Ok(()) /// # } /// ``` pub trait Seek { /// Seek to an offset, in bytes, in a stream. /// /// A seek beyond the end of a stream is allowed, but implementation /// defined. /// /// If the seek operation completed successfully, /// this method returns the new position from the start of the stream. /// That position can be used later with [`SeekFrom::Start`]. /// /// # Errors /// /// Seeking to a negative offset is considered an error. /// /// [`SeekFrom::Start`]: enum.SeekFrom.html#variant.Start fn seek(&mut self, pos: SeekFrom) -> Result; } /// Enumeration of possible methods to seek within an I/O object. /// /// It is used by the [`Seek`] trait. /// /// [`Seek`]: trait.Seek.html #[derive(Copy, PartialEq, Eq, Clone, Debug)] pub enum SeekFrom { /// Set the offset to the provided number of bytes. Start(u64), /// Set the offset to the size of this object plus the specified number of /// bytes. /// /// It is possible to seek beyond the end of an object, but it's an error to /// seek before byte 0. End(i64), /// Set the offset to the current position plus the specified number of /// bytes. /// /// It is possible to seek beyond the end of an object, but it's an error to /// seek before byte 0. Current(i64), } fn read_until(r: &mut R, delim: u8, buf: &mut Vec) -> Result { let mut read = 0; loop { let (done, used) = { let available = match r.fill_buf() { Ok(n) => n, Err(ref e) if e.kind() == ErrorKind::Interrupted => continue, Err(e) => return Err(e) }; match memchr::memchr(delim, available) { Some(i) => { buf.extend_from_slice(&available[..i + 1]); (true, i + 1) } None => { buf.extend_from_slice(available); (false, available.len()) } } }; r.consume(used); read += used; if done || used == 0 { return Ok(read); } } } /// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it /// to perform extra ways of reading. /// /// For example, reading line-by-line is inefficient without using a buffer, so /// if you want to read by line, you'll need `BufRead`, which includes a /// [`read_line()`][readline] method as well as a [`lines()`][lines] iterator. /// /// [readline]: #method.read_line /// [lines]: #method.lines /// /// # Examples /// /// A locked standard input implements `BufRead`: /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// for line in stdin.lock().lines() { /// println!("{}", line.unwrap()); /// } /// ``` /// /// If you have something that implements `Read`, you can use the [`BufReader` /// type][bufreader] to turn it into a `BufRead`. /// /// For example, [`File`][file] implements `Read`, but not `BufRead`. /// `BufReader` to the rescue! /// /// [bufreader]: struct.BufReader.html /// [file]: ../fs/struct.File.html /// /// ``` /// use std::io::{self, BufReader}; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let f = try!(File::open("foo.txt")); /// let f = BufReader::new(f); /// /// for line in f.lines() { /// println!("{}", line.unwrap()); /// } /// /// # Ok(()) /// # } /// ``` /// pub trait BufRead: Read { /// Fills the internal buffer of this object, returning the buffer contents. /// /// This function is a lower-level call. It needs to be paired with the /// [`consume`][consume] method to function properly. When calling this /// method, none of the contents will be "read" in the sense that later /// calling `read` may return the same contents. As such, `consume` must be /// called with the number of bytes that are consumed from this buffer to /// ensure that the bytes are never returned twice. /// /// [consume]: #tymethod.consume /// /// An empty buffer returned indicates that the stream has reached EOF. /// /// # Errors /// /// This function will return an I/O error if the underlying reader was /// read, but returned an error. /// /// # Examples /// /// A locked standard input implements `BufRead`: /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// let mut stdin = stdin.lock(); /// /// // we can't have two `&mut` references to `stdin`, so use a block /// // to end the borrow early. /// let length = { /// let buffer = stdin.fill_buf().unwrap(); /// /// // work with buffer /// println!("{:?}", buffer); /// /// buffer.len() /// }; /// /// // ensure the bytes we worked with aren't returned again later /// stdin.consume(length); /// ``` fn fill_buf(&mut self) -> Result<&[u8]>; /// Tells this buffer that `amt` bytes have been consumed from the buffer, /// so they should no longer be returned in calls to `read`. /// /// This function is a lower-level call. It needs to be paired with the /// [`fill_buf`][fillbuf] method to function properly. This function does /// not perform any I/O, it simply informs this object that some amount of /// its buffer, returned from `fill_buf`, has been consumed and should no /// longer be returned. As such, this function may do odd things if /// `fill_buf` isn't called before calling it. /// /// [fillbuf]: #tymethod.fill_buf /// /// The `amt` must be `<=` the number of bytes in the buffer returned by /// `fill_buf`. /// /// # Examples /// /// Since `consume()` is meant to be used with [`fill_buf()`][fillbuf], /// that method's example includes an example of `consume()`. fn consume(&mut self, amt: usize); /// Read all bytes into `buf` until the delimiter `byte` is reached. /// /// This function will read bytes from the underlying stream until the /// delimiter or EOF is found. Once found, all bytes up to, and including, /// the delimiter (if found) will be appended to `buf`. /// /// If this reader is currently at EOF then this function will not modify /// `buf` and will return `Ok(n)` where `n` is the number of bytes which /// were read. /// /// # Errors /// /// This function will ignore all instances of `ErrorKind::Interrupted` and /// will otherwise return any errors returned by `fill_buf`. /// /// If an I/O error is encountered then all bytes read so far will be /// present in `buf` and its length will have been adjusted appropriately. /// /// # Examples /// /// A locked standard input implements `BufRead`. In this example, we'll /// read from standard input until we see an `a` byte. /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// fn foo() -> io::Result<()> { /// let stdin = io::stdin(); /// let mut stdin = stdin.lock(); /// let mut buffer = Vec::new(); /// /// try!(stdin.read_until(b'a', &mut buffer)); /// /// println!("{:?}", buffer); /// # Ok(()) /// # } /// ``` fn read_until(&mut self, byte: u8, buf: &mut Vec) -> Result { read_until(self, byte, buf) } /// Read all bytes until a newline (the 0xA byte) is reached, and append /// them to the provided buffer. /// /// This function will read bytes from the underlying stream until the /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes /// up to, and including, the delimiter (if found) will be appended to /// `buf`. /// /// If this reader is currently at EOF then this function will not modify /// `buf` and will return `Ok(n)` where `n` is the number of bytes which /// were read. /// /// # Errors /// /// This function has the same error semantics as `read_until` and will also /// return an error if the read bytes are not valid UTF-8. If an I/O error /// is encountered then `buf` may contain some bytes already read in the /// event that all data read so far was valid UTF-8. /// /// # Examples /// /// A locked standard input implements `BufRead`. In this example, we'll /// read all of the lines from standard input. If we were to do this in /// an actual project, the [`lines()`][lines] method would be easier, of /// course. /// /// [lines]: #method.lines /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// let mut stdin = stdin.lock(); /// let mut buffer = String::new(); /// /// while stdin.read_line(&mut buffer).unwrap() > 0 { /// // work with buffer /// println!("{:?}", buffer); /// /// buffer.clear(); /// } /// ``` fn read_line(&mut self, buf: &mut String) -> Result { // Note that we are not calling the `.read_until` method here, but // rather our hardcoded implementation. For more details as to why, see // the comments in `read_to_end`. append_to_string(buf, |b| read_until(self, b'\n', b)) } /// Returns an iterator over the contents of this reader split on the byte /// `byte`. /// /// The iterator returned from this function will return instances of /// `io::Result>`. Each vector returned will *not* have the /// delimiter byte at the end. /// /// This function will yield errors whenever `read_until` would have also /// yielded an error. /// /// # Examples /// /// A locked standard input implements `BufRead`. In this example, we'll /// read some input from standard input, splitting on commas. /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// /// for content in stdin.lock().split(b',') { /// println!("{:?}", content.unwrap()); /// } /// ``` fn split(self, byte: u8) -> Split where Self: Sized { Split { buf: self, delim: byte } } /// Returns an iterator over the lines of this reader. /// /// The iterator returned from this function will yield instances of /// `io::Result`. Each string returned will *not* have a newline /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end. /// /// # Examples /// /// A locked standard input implements `BufRead`: /// /// ``` /// use std::io; /// use std::io::prelude::*; /// /// let stdin = io::stdin(); /// /// for line in stdin.lock().lines() { /// println!("{}", line.unwrap()); /// } /// ``` fn lines(self) -> Lines where Self: Sized { Lines { buf: self } } } /// Adaptor to chain together two readers. /// /// This struct is generally created by calling [`chain()`][chain] on a reader. /// Please see the documentation of `chain()` for more details. /// /// [chain]: trait.Read.html#method.chain pub struct Chain { first: T, second: U, done_first: bool, } impl Read for Chain { fn read(&mut self, buf: &mut [u8]) -> Result { if !self.done_first { match self.first.read(buf)? { 0 => { self.done_first = true; } n => return Ok(n), } } self.second.read(buf) } } impl BufRead for Chain { fn fill_buf(&mut self) -> Result<&[u8]> { if !self.done_first { match self.first.fill_buf()? { buf if buf.len() == 0 => { self.done_first = true; } buf => return Ok(buf), } } self.second.fill_buf() } fn consume(&mut self, amt: usize) { if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) } } } /// Reader adaptor which limits the bytes read from an underlying reader. /// /// This struct is generally created by calling [`take()`][take] on a reader. /// Please see the documentation of `take()` for more details. /// /// [take]: trait.Read.html#method.take pub struct Take { inner: T, limit: u64, } impl Take { /// Returns the number of bytes that can be read before this instance will /// return EOF. /// /// # Note /// /// This instance may reach EOF after reading fewer bytes than indicated by /// this method if the underlying `Read` instance reaches EOF. /// /// # Examples /// /// ``` /// use std::io; /// use std::io::prelude::*; /// use std::fs::File; /// /// # fn foo() -> io::Result<()> { /// let f = try!(File::open("foo.txt")); /// /// // read at most five bytes /// let handle = f.take(5); /// /// println!("limit: {}", handle.limit()); /// # Ok(()) /// # } /// ``` pub fn limit(&self) -> u64 { self.limit } } impl Read for Take { fn read(&mut self, buf: &mut [u8]) -> Result { // Don't call into inner reader at all at EOF because it may still block if self.limit == 0 { return Ok(0); } let max = cmp::min(buf.len() as u64, self.limit) as usize; let n = self.inner.read(&mut buf[..max])?; self.limit -= n as u64; Ok(n) } } impl BufRead for Take { fn fill_buf(&mut self) -> Result<&[u8]> { // Don't call into inner reader at all at EOF because it may still block if self.limit == 0 { return Ok(&[]); } let buf = self.inner.fill_buf()?; let cap = cmp::min(buf.len() as u64, self.limit) as usize; Ok(&buf[..cap]) } fn consume(&mut self, amt: usize) { // Don't let callers reset the limit by passing an overlarge value let amt = cmp::min(amt as u64, self.limit) as usize; self.limit -= amt as u64; self.inner.consume(amt); } } fn read_one_byte(reader: &mut Read) -> Option> { let mut buf = [0]; loop { return match reader.read(&mut buf) { Ok(0) => None, Ok(..) => Some(Ok(buf[0])), Err(ref e) if e.kind() == ErrorKind::Interrupted => continue, Err(e) => Some(Err(e)), }; } } /// An iterator over `u8` values of a reader. /// /// This struct is generally created by calling [`bytes()`][bytes] on a reader. /// Please see the documentation of `bytes()` for more details. /// /// [bytes]: trait.Read.html#method.bytes pub struct Bytes { inner: R, } impl Iterator for Bytes { type Item = Result; fn next(&mut self) -> Option> { read_one_byte(&mut self.inner) } } /// An iterator over the `char`s of a reader. /// /// This struct is generally created by calling [`chars()`][chars] on a reader. /// Please see the documentation of `chars()` for more details. /// /// [chars]: trait.Read.html#method.chars pub struct Chars { inner: R, } /// An enumeration of possible errors that can be generated from the `Chars` /// adapter. #[derive(Debug)] pub enum CharsError { /// Variant representing that the underlying stream was read successfully /// but it did not contain valid utf8 data. NotUtf8, /// Variant representing that an I/O error occurred. Other(Error), } impl Iterator for Chars { type Item = result::Result; fn next(&mut self) -> Option> { let first_byte = match read_one_byte(&mut self.inner) { None => return None, Some(Ok(b)) => b, Some(Err(e)) => return Some(Err(CharsError::Other(e))), }; let width = core_str::utf8_char_width(first_byte); if width == 1 { return Some(Ok(first_byte as char)) } if width == 0 { return Some(Err(CharsError::NotUtf8)) } let mut buf = [first_byte, 0, 0, 0]; { let mut start = 1; while start < width { match self.inner.read(&mut buf[start..width]) { Ok(0) => return Some(Err(CharsError::NotUtf8)), Ok(n) => start += n, Err(ref e) if e.kind() == ErrorKind::Interrupted => continue, Err(e) => return Some(Err(CharsError::Other(e))), } } } Some(match str::from_utf8(&buf[..width]).ok() { Some(s) => Ok(s.chars().next().unwrap()), None => Err(CharsError::NotUtf8), }) } } impl std_error::Error for CharsError { fn description(&self) -> &str { match *self { CharsError::NotUtf8 => "invalid utf8 encoding", CharsError::Other(ref e) => std_error::Error::description(e), } } fn cause(&self) -> Option<&std_error::Error> { match *self { CharsError::NotUtf8 => None, CharsError::Other(ref e) => e.cause(), } } } impl fmt::Display for CharsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { CharsError::NotUtf8 => { "byte stream did not contain valid utf8".fmt(f) } CharsError::Other(ref e) => e.fmt(f), } } } /// An iterator over the contents of an instance of `BufRead` split on a /// particular byte. /// /// This struct is generally created by calling [`split()`][split] on a /// `BufRead`. Please see the documentation of `split()` for more details. /// /// [split]: trait.BufRead.html#method.split pub struct Split { buf: B, delim: u8, } impl Iterator for Split { type Item = Result>; fn next(&mut self) -> Option>> { let mut buf = Vec::new(); match self.buf.read_until(self.delim, &mut buf) { Ok(0) => None, Ok(_n) => { if buf[buf.len() - 1] == self.delim { buf.pop(); } Some(Ok(buf)) } Err(e) => Some(Err(e)) } } } /// An iterator over the lines of an instance of `BufRead`. /// /// This struct is generally created by calling [`lines()`][lines] on a /// `BufRead`. Please see the documentation of `lines()` for more details. /// /// [lines]: trait.BufRead.html#method.lines pub struct Lines { buf: B, } impl Iterator for Lines { type Item = Result; fn next(&mut self) -> Option> { let mut buf = String::new(); match self.buf.read_line(&mut buf) { Ok(0) => None, Ok(_n) => { if buf.ends_with("\n") { buf.pop(); if buf.ends_with("\r") { buf.pop(); } } Some(Ok(buf)) } Err(e) => Some(Err(e)) } } } #[cfg(test)] mod tests { use io::prelude::*; use io; use super::Cursor; use super::repeat; use test; use collections::{Vec, String}; use collections::string::ToString; #[test] fn read_until() { let mut buf = Cursor::new(&b"12"[..]); let mut v = Vec::new(); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2); assert_eq!(v, b"12"); let mut buf = Cursor::new(&b"1233"[..]); let mut v = Vec::new(); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3); assert_eq!(v, b"123"); v.truncate(0); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1); assert_eq!(v, b"3"); v.truncate(0); assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0); assert_eq!(v, []); } #[test] fn split() { let buf = Cursor::new(&b"12"[..]); let mut s = buf.split(b'3'); assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']); assert!(s.next().is_none()); let buf = Cursor::new(&b"1233"[..]); let mut s = buf.split(b'3'); assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']); assert_eq!(s.next().unwrap().unwrap(), vec![]); assert!(s.next().is_none()); } #[test] fn read_line() { let mut buf = Cursor::new(&b"12"[..]); let mut v = String::new(); assert_eq!(buf.read_line(&mut v).unwrap(), 2); assert_eq!(v, "12"); let mut buf = Cursor::new(&b"12\n\n"[..]); let mut v = String::new(); assert_eq!(buf.read_line(&mut v).unwrap(), 3); assert_eq!(v, "12\n"); v.truncate(0); assert_eq!(buf.read_line(&mut v).unwrap(), 1); assert_eq!(v, "\n"); v.truncate(0); assert_eq!(buf.read_line(&mut v).unwrap(), 0); assert_eq!(v, ""); } #[test] fn lines() { let buf = Cursor::new(&b"12\r"[..]); let mut s = buf.lines(); assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string()); assert!(s.next().is_none()); let buf = Cursor::new(&b"12\r\n\n"[..]); let mut s = buf.lines(); assert_eq!(s.next().unwrap().unwrap(), "12".to_string()); assert_eq!(s.next().unwrap().unwrap(), "".to_string()); assert!(s.next().is_none()); } #[test] fn read_to_end() { let mut c = Cursor::new(&b""[..]); let mut v = Vec::new(); assert_eq!(c.read_to_end(&mut v).unwrap(), 0); assert_eq!(v, []); let mut c = Cursor::new(&b"1"[..]); let mut v = Vec::new(); assert_eq!(c.read_to_end(&mut v).unwrap(), 1); assert_eq!(v, b"1"); let cap = 1024 * 1024; let data = (0..cap).map(|i| (i / 3) as u8).collect::>(); let mut v = Vec::new(); let (a, b) = data.split_at(data.len() / 2); assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len()); assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len()); assert_eq!(v, data); } #[test] fn read_to_string() { let mut c = Cursor::new(&b""[..]); let mut v = String::new(); assert_eq!(c.read_to_string(&mut v).unwrap(), 0); assert_eq!(v, ""); let mut c = Cursor::new(&b"1"[..]); let mut v = String::new(); assert_eq!(c.read_to_string(&mut v).unwrap(), 1); assert_eq!(v, "1"); let mut c = Cursor::new(&b"\xff"[..]); let mut v = String::new(); assert!(c.read_to_string(&mut v).is_err()); } #[test] fn read_exact() { let mut buf = [0; 4]; let mut c = Cursor::new(&b""[..]); assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..])); c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"1234"); c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"5678"); assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); } #[test] fn read_exact_slice() { let mut buf = [0; 4]; let mut c = &b""[..]; assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); let mut c = &b"123"[..]; assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof); // make sure the optimized (early returning) method is being used assert_eq!(&buf, &[0; 4]); let mut c = &b"1234"[..]; c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"1234"); let mut c = &b"56789"[..]; c.read_exact(&mut buf).unwrap(); assert_eq!(&buf, b"5678"); assert_eq!(c, b"9"); } #[test] fn take_eof() { struct R; impl Read for R { fn read(&mut self, _: &mut [u8]) -> io::Result { Err(io::Error::new(io::ErrorKind::Other, "")) } } impl BufRead for R { fn fill_buf(&mut self) -> io::Result<&[u8]> { Err(io::Error::new(io::ErrorKind::Other, "")) } fn consume(&mut self, _amt: usize) { } } let mut buf = [0; 1]; assert_eq!(0, R.take(0).read(&mut buf).unwrap()); assert_eq!(b"", R.take(0).fill_buf().unwrap()); } fn cmp_bufread(mut br1: Br1, mut br2: Br2, exp: &[u8]) { let mut cat = Vec::new(); loop { let consume = { let buf1 = br1.fill_buf().unwrap(); let buf2 = br2.fill_buf().unwrap(); let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() }; assert_eq!(buf1[..minlen], buf2[..minlen]); cat.extend_from_slice(&buf1[..minlen]); minlen }; if consume == 0 { break; } br1.consume(consume); br2.consume(consume); } assert_eq!(br1.fill_buf().unwrap().len(), 0); assert_eq!(br2.fill_buf().unwrap().len(), 0); assert_eq!(&cat[..], &exp[..]) } #[test] fn chain_bufread() { let testdata = b"ABCDEFGHIJKL"; let chain1 = (&testdata[..3]).chain(&testdata[3..6]) .chain(&testdata[6..9]) .chain(&testdata[9..]); let chain2 = (&testdata[..4]).chain(&testdata[4..8]) .chain(&testdata[8..]); cmp_bufread(chain1, chain2, &testdata[..]); } #[bench] fn bench_read_to_end(b: &mut test::Bencher) { b.iter(|| { let mut lr = repeat(1).take(10000000); let mut vec = Vec::with_capacity(1024); super::read_to_end(&mut lr, &mut vec) }); } }