//! This example demonstrates the most basic usage of `citro3d`: rendering a simple //! RGB triangle (sometimes called a "Hello triangle") to the 3DS screen. #![feature(allocator_api)] use citro3d::macros::include_shader; use citro3d::math::{AspectRatio, ClipPlanes, Matrix4, Projection, StereoDisplacement}; use citro3d::render::ClearFlags; use citro3d::texenv; use citro3d::{attrib, buffer, render, shader}; use ctru::prelude::*; use ctru::services::gfx::{RawFrameBuffer, Screen, TopScreen3D}; #[repr(C)] #[derive(Copy, Clone)] struct Vec3 { x: f32, y: f32, z: f32, } impl Vec3 { const fn new(x: f32, y: f32, z: f32) -> Self { Self { x, y, z } } } #[repr(C)] #[derive(Copy, Clone)] struct Vertex { pos: Vec3, color: Vec3, } static VERTICES: &[Vertex] = &[ Vertex { pos: Vec3::new(0.0, 0.5, -3.0), color: Vec3::new(1.0, 0.0, 0.0), }, Vertex { pos: Vec3::new(-0.5, -0.5, -3.0), color: Vec3::new(0.0, 1.0, 0.0), }, Vertex { pos: Vec3::new(0.5, -0.5, -3.0), color: Vec3::new(0.0, 0.0, 1.0), }, ]; static SHADER_BYTES: &[u8] = include_shader!("assets/vshader.pica"); const CLEAR_COLOR: u32 = 0x68_B0_D8_FF; fn main() { let mut soc = Soc::new().expect("failed to get SOC"); drop(soc.redirect_to_3dslink(true, true)); let gfx = Gfx::new().expect("Couldn't obtain GFX controller"); let mut hid = Hid::new().expect("Couldn't obtain HID controller"); let apt = Apt::new().expect("Couldn't obtain APT controller"); let mut instance = citro3d::Instance::new().expect("failed to initialize Citro3D"); let top_screen = TopScreen3D::from(&gfx.top_screen); let (mut top_left, mut top_right) = top_screen.split_mut(); let RawFrameBuffer { width, height, .. } = top_left.raw_framebuffer(); let mut top_left_target = instance .render_target(width, height, top_left, None) .expect("failed to create render target"); let RawFrameBuffer { width, height, .. } = top_right.raw_framebuffer(); let mut top_right_target = instance .render_target(width, height, top_right, None) .expect("failed to create render target"); let mut bottom_screen = gfx.bottom_screen.borrow_mut(); let RawFrameBuffer { width, height, .. } = bottom_screen.raw_framebuffer(); let mut bottom_target = instance .render_target(width, height, bottom_screen, None) .expect("failed to create bottom screen render target"); let shader = shader::Library::from_bytes(SHADER_BYTES).unwrap(); let vertex_shader = shader.get(0).unwrap(); let program = shader::Program::new(vertex_shader).unwrap(); instance.bind_program(&program); let mut vbo_data = Vec::with_capacity_in(VERTICES.len(), ctru::linear::LinearAllocator); vbo_data.extend_from_slice(VERTICES); let mut buf_info = buffer::Info::new(); let (attr_info, vbo_data) = prepare_vbos(&mut buf_info, &vbo_data); // Configure the first fragment shading substage to just pass through the vertex color // See https://www.opengl.org/sdk/docs/man2/xhtml/glTexEnv.xml for more insight let stage0 = texenv::Stage::new(0).unwrap(); instance .texenv(stage0) .src(texenv::Mode::BOTH, texenv::Source::PrimaryColor, None, None) .func(texenv::Mode::BOTH, texenv::CombineFunc::Replace); let projection_uniform_idx = program.get_uniform("projection").unwrap(); while apt.main_loop() { hid.scan_input(); if hid.keys_down().contains(KeyPad::START) { break; } instance.render_frame_with(|instance| { let mut render_to = |target: &mut render::Target, projection| { target.clear(ClearFlags::ALL, CLEAR_COLOR, 0); instance .select_render_target(target) .expect("failed to set render target"); instance.bind_vertex_uniform(projection_uniform_idx, projection); instance.set_attr_info(&attr_info); instance.draw_arrays(buffer::Primitive::Triangles, vbo_data); }; let Projections { left_eye, right_eye, center, } = calculate_projections(); render_to(&mut top_left_target, &left_eye); render_to(&mut top_right_target, &right_eye); render_to(&mut bottom_target, ¢er); }); } } fn prepare_vbos<'a>( buf_info: &'a mut buffer::Info, vbo_data: &'a [Vertex], ) -> (attrib::Info, buffer::Slice<'a>) { // Configure attributes for use with the vertex shader let mut attr_info = attrib::Info::new(); let reg0 = attrib::Register::new(0).unwrap(); let reg1 = attrib::Register::new(1).unwrap(); attr_info .add_loader(reg0, attrib::Format::Float, 3) .unwrap(); attr_info .add_loader(reg1, attrib::Format::Float, 3) .unwrap(); let buf_idx = buf_info.add(vbo_data, &attr_info).unwrap(); (attr_info, buf_idx) } struct Projections { left_eye: Matrix4, right_eye: Matrix4, center: Matrix4, } fn calculate_projections() -> Projections { // TODO: it would be cool to allow playing around with these parameters on // the fly with D-pad, etc. let slider_val = ctru::os::current_3d_slider_state(); let interocular_distance = slider_val / 2.0; let vertical_fov = 40.0_f32.to_radians(); let screen_depth = 2.0; let clip_planes = ClipPlanes { near: 0.01, far: 100.0, }; let (left, right) = StereoDisplacement::new(interocular_distance, screen_depth); let (left_eye, right_eye) = Projection::perspective(vertical_fov, AspectRatio::TopScreen, clip_planes) .stereo_matrices(left, right); let center = Projection::perspective(vertical_fov, AspectRatio::BottomScreen, clip_planes).into(); Projections { left_eye, right_eye, center, } }