Browse Source

Merge pull request #16 from rust3ds/feature/buffer-safe-wrapper

pull/19/head
Ian Chamberlain 1 year ago committed by GitHub
parent
commit
795a9d93d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      bindgen-citro3d/Cargo.toml
  2. 287
      citro3d-sys/src/bindings.rs
  3. 2
      citro3d-sys/src/lib.rs
  4. 13
      citro3d-sys/src/os.rs
  5. 203
      citro3d/examples/triangle.rs
  6. 134
      citro3d/src/attrib.rs
  7. 140
      citro3d/src/buffer.rs
  8. 22
      citro3d/src/error.rs
  9. 48
      citro3d/src/lib.rs
  10. 3
      citro3d/src/render.rs
  11. 22
      citro3d/src/shader.rs
  12. 15
      citro3d/src/shader/macros.rs
  13. 1
      citro3d/src/texture.rs
  14. 1
      citro3d/src/vbo.rs

1
bindgen-citro3d/Cargo.toml

@ -3,6 +3,7 @@ name = "bindgen-citro3d"
version = "0.1.0" version = "0.1.0"
edition = "2021" edition = "2021"
description = "Helper tool to generate citro3d-sys bindings." description = "Helper tool to generate citro3d-sys bindings."
publish = false
[dependencies] [dependencies]
bindgen = "0.62.0" bindgen = "0.62.0"

287
citro3d-sys/src/bindings.rs

@ -1,4 +1,4 @@
/* automatically generated by rust-bindgen 0.62.0 */ /* automatically generated by rust-bindgen 0.64.0 */
use ctru_sys::*; use ctru_sys::*;
@ -96,10 +96,7 @@ pub type _off_t = __int64_t;
pub type _fpos_t = __int64_t; pub type _fpos_t = __int64_t;
pub type wint_t = ::libc::c_int; pub type wint_t = ::libc::c_int;
pub type C3D_IVec = u32_; pub type C3D_IVec = u32_;
#[doc = " @struct C3D_FVec"] #[doc = " @struct C3D_FVec\n @brief Float vector\n\n Matches PICA layout"]
#[doc = " @brief Float vector"]
#[doc = ""]
#[doc = " Matches PICA layout"]
#[repr(C)] #[repr(C)]
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
pub union C3D_FVec { pub union C3D_FVec {
@ -134,13 +131,9 @@ pub struct C3D_FVec__bindgen_ty_2 {
#[doc = "< I-component"] #[doc = "< I-component"]
pub i: f32, pub i: f32,
} }
#[doc = " @struct C3D_FVec"] #[doc = " @struct C3D_FVec\n @brief Float vector\n\n Matches PICA layout"]
#[doc = " @brief Float vector"]
#[doc = ""]
#[doc = " Matches PICA layout"]
pub type C3D_FQuat = C3D_FVec; pub type C3D_FQuat = C3D_FVec;
#[doc = " @struct C3D_Mtx"] #[doc = " @struct C3D_Mtx\n @brief Row-major 4x4 matrix"]
#[doc = " @brief Row-major 4x4 matrix"]
#[repr(C)] #[repr(C)]
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
pub union C3D_Mtx { pub union C3D_Mtx {
@ -150,101 +143,55 @@ pub union C3D_Mtx {
pub m: [f32; 16usize], pub m: [f32; 16usize],
} }
extern "C" { extern "C" {
#[doc = "@brief Transposes the matrix. Row => Column, and vice versa."] #[doc = "@brief Transposes the matrix. Row => Column, and vice versa.\n@param[in,out] out Output matrix."]
#[doc = "@param[in,out] out Output matrix."]
pub fn Mtx_Transpose(out: *mut C3D_Mtx); pub fn Mtx_Transpose(out: *mut C3D_Mtx);
} }
extern "C" { extern "C" {
#[doc = " @brief Multiply two matrices"] #[doc = " @brief Multiply two matrices\n @param[out] out Output matrix\n @param[in] a Multiplicand\n @param[in] b Multiplier"]
#[doc = " @param[out] out Output matrix"]
#[doc = " @param[in] a Multiplicand"]
#[doc = " @param[in] b Multiplier"]
pub fn Mtx_Multiply(out: *mut C3D_Mtx, a: *const C3D_Mtx, b: *const C3D_Mtx); pub fn Mtx_Multiply(out: *mut C3D_Mtx, a: *const C3D_Mtx, b: *const C3D_Mtx);
} }
extern "C" { extern "C" {
#[doc = " @brief Inverse a matrix"] #[doc = " @brief Inverse a matrix\n @param[in,out] out Matrix to inverse\n @retval 0.0f Degenerate matrix (no inverse)\n @return determinant"]
#[doc = " @param[in,out] out Matrix to inverse"]
#[doc = " @retval 0.0f Degenerate matrix (no inverse)"]
#[doc = " @return determinant"]
pub fn Mtx_Inverse(out: *mut C3D_Mtx) -> f32; pub fn Mtx_Inverse(out: *mut C3D_Mtx) -> f32;
} }
extern "C" { extern "C" {
#[doc = " @brief Multiply 3x3 matrix by a FVec3"] #[doc = " @brief Multiply 3x3 matrix by a FVec3\n @param[in] mtx Matrix\n @param[in] v Vector\n @return mtx*v (product)"]
#[doc = " @param[in] mtx Matrix"]
#[doc = " @param[in] v Vector"]
#[doc = " @return mtx*v (product)"]
pub fn Mtx_MultiplyFVec3(mtx: *const C3D_Mtx, v: C3D_FVec) -> C3D_FVec; pub fn Mtx_MultiplyFVec3(mtx: *const C3D_Mtx, v: C3D_FVec) -> C3D_FVec;
} }
extern "C" { extern "C" {
#[doc = " @brief Multiply 4x4 matrix by a FVec4"] #[doc = " @brief Multiply 4x4 matrix by a FVec4\n @param[in] mtx Matrix\n @param[in] v Vector\n @return mtx*v (product)"]
#[doc = " @param[in] mtx Matrix"]
#[doc = " @param[in] v Vector"]
#[doc = " @return mtx*v (product)"]
pub fn Mtx_MultiplyFVec4(mtx: *const C3D_Mtx, v: C3D_FVec) -> C3D_FVec; pub fn Mtx_MultiplyFVec4(mtx: *const C3D_Mtx, v: C3D_FVec) -> C3D_FVec;
} }
extern "C" { extern "C" {
#[doc = " @brief Get 4x4 matrix equivalent to Quaternion"] #[doc = " @brief Get 4x4 matrix equivalent to Quaternion\n @param[out] m Output matrix\n @param[in] q Input Quaternion"]
#[doc = " @param[out] m Output matrix"]
#[doc = " @param[in] q Input Quaternion"]
pub fn Mtx_FromQuat(m: *mut C3D_Mtx, q: C3D_FQuat); pub fn Mtx_FromQuat(m: *mut C3D_Mtx, q: C3D_FQuat);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D translation"] #[doc = " @brief 3D translation\n @param[in,out] mtx Matrix to translate\n @param[in] x X component to translate\n @param[in] y Y component to translate\n @param[in] z Z component to translate\n @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @param[in,out] mtx Matrix to translate"]
#[doc = " @param[in] x X component to translate"]
#[doc = " @param[in] y Y component to translate"]
#[doc = " @param[in] z Z component to translate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
pub fn Mtx_Translate(mtx: *mut C3D_Mtx, x: f32, y: f32, z: f32, bRightSide: bool); pub fn Mtx_Translate(mtx: *mut C3D_Mtx, x: f32, y: f32, z: f32, bRightSide: bool);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Scale"] #[doc = " @brief 3D Scale\n @param[in,out] mtx Matrix to scale\n @param[in] x X component to scale\n @param[in] y Y component to scale\n @param[in] z Z component to scale"]
#[doc = " @param[in,out] mtx Matrix to scale"]
#[doc = " @param[in] x X component to scale"]
#[doc = " @param[in] y Y component to scale"]
#[doc = " @param[in] z Z component to scale"]
pub fn Mtx_Scale(mtx: *mut C3D_Mtx, x: f32, y: f32, z: f32); pub fn Mtx_Scale(mtx: *mut C3D_Mtx, x: f32, y: f32, z: f32);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation"] #[doc = " @brief 3D Rotation\n @param[in,out] mtx Matrix to rotate\n @param[in] axis Axis about which to rotate\n @param[in] angle Radians to rotate\n @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @param[in,out] mtx Matrix to rotate"]
#[doc = " @param[in] axis Axis about which to rotate"]
#[doc = " @param[in] angle Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
pub fn Mtx_Rotate(mtx: *mut C3D_Mtx, axis: C3D_FVec, angle: f32, bRightSide: bool); pub fn Mtx_Rotate(mtx: *mut C3D_Mtx, axis: C3D_FVec, angle: f32, bRightSide: bool);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the X axis"] #[doc = " @brief 3D Rotation about the X axis\n @param[in,out] mtx Matrix to rotate\n @param[in] angle Radians to rotate\n @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @param[in,out] mtx Matrix to rotate"]
#[doc = " @param[in] angle Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
pub fn Mtx_RotateX(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool); pub fn Mtx_RotateX(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the Y axis"] #[doc = " @brief 3D Rotation about the Y axis\n @param[in,out] mtx Matrix to rotate\n @param[in] angle Radians to rotate\n @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @param[in,out] mtx Matrix to rotate"]
#[doc = " @param[in] angle Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
pub fn Mtx_RotateY(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool); pub fn Mtx_RotateY(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool);
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the Z axis"] #[doc = " @brief 3D Rotation about the Z axis\n @param[in,out] mtx Matrix to rotate\n @param[in] angle Radians to rotate\n @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @param[in,out] mtx Matrix to rotate"]
#[doc = " @param[in] angle Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
pub fn Mtx_RotateZ(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool); pub fn Mtx_RotateZ(mtx: *mut C3D_Mtx, angle: f32, bRightSide: bool);
} }
extern "C" { extern "C" {
#[doc = " @brief Orthogonal projection"] #[doc = " @brief Orthogonal projection\n @param[out] mtx Output matrix\n @param[in] left Left clip plane (X=left)\n @param[in] right Right clip plane (X=right)\n @param[in] bottom Bottom clip plane (Y=bottom)\n @param[in] top Top clip plane (Y=top)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_OrthoTilt"]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] left Left clip plane (X=left)"]
#[doc = " @param[in] right Right clip plane (X=right)"]
#[doc = " @param[in] bottom Bottom clip plane (Y=bottom)"]
#[doc = " @param[in] top Top clip plane (Y=top)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_OrthoTilt"]
pub fn Mtx_Ortho( pub fn Mtx_Ortho(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
left: f32, left: f32,
@ -257,16 +204,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Perspective projection"] #[doc = " @brief Perspective projection\n @param[out] mtx Output matrix\n @param[in] fovy Vertical field of view in radians\n @param[in] aspect Aspect ration of projection plane (width/height)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_PerspTilt\n @sa Mtx_PerspStereo\n @sa Mtx_PerspStereoTilt"]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] fovy Vertical field of view in radians"]
#[doc = " @param[in] aspect Aspect ration of projection plane (width/height)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_PerspTilt"]
#[doc = " @sa Mtx_PerspStereo"]
#[doc = " @sa Mtx_PerspStereoTilt"]
pub fn Mtx_Persp( pub fn Mtx_Persp(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
fovy: f32, fovy: f32,
@ -277,24 +215,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Stereo perspective projection"] #[doc = " @brief Stereo perspective projection\n @note Typically you will use iod to mean the distance between the eyes. Plug\n in -iod for the left eye and iod for the right eye.\n @note The focal length is defined by screen. If objects are further than this,\n they will appear to be inside the screen. If objects are closer than this,\n they will appear to pop out of the screen. Objects at this distance appear\n to be at the screen.\n @param[out] mtx Output matrix\n @param[in] fovy Vertical field of view in radians\n @param[in] aspect Aspect ration of projection plane (width/height)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] iod Interocular distance\n @param[in] screen Focal length\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_Persp\n @sa Mtx_PerspTilt\n @sa Mtx_PerspStereoTilt"]
#[doc = " @note Typically you will use iod to mean the distance between the eyes. Plug"]
#[doc = " in -iod for the left eye and iod for the right eye."]
#[doc = " @note The focal length is defined by screen. If objects are further than this,"]
#[doc = " they will appear to be inside the screen. If objects are closer than this,"]
#[doc = " they will appear to pop out of the screen. Objects at this distance appear"]
#[doc = " to be at the screen."]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] fovy Vertical field of view in radians"]
#[doc = " @param[in] aspect Aspect ration of projection plane (width/height)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] iod Interocular distance"]
#[doc = " @param[in] screen Focal length"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_Persp"]
#[doc = " @sa Mtx_PerspTilt"]
#[doc = " @sa Mtx_PerspStereoTilt"]
pub fn Mtx_PerspStereo( pub fn Mtx_PerspStereo(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
fovy: f32, fovy: f32,
@ -307,16 +228,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Orthogonal projection, tilted to account for the 3DS screen rotation"] #[doc = " @brief Orthogonal projection, tilted to account for the 3DS screen rotation\n @param[out] mtx Output matrix\n @param[in] left Left clip plane (X=left)\n @param[in] right Right clip plane (X=right)\n @param[in] bottom Bottom clip plane (Y=bottom)\n @param[in] top Top clip plane (Y=top)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_Ortho"]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] left Left clip plane (X=left)"]
#[doc = " @param[in] right Right clip plane (X=right)"]
#[doc = " @param[in] bottom Bottom clip plane (Y=bottom)"]
#[doc = " @param[in] top Top clip plane (Y=top)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_Ortho"]
pub fn Mtx_OrthoTilt( pub fn Mtx_OrthoTilt(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
left: f32, left: f32,
@ -329,16 +241,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Perspective projection, tilted to account for the 3DS screen rotation"] #[doc = " @brief Perspective projection, tilted to account for the 3DS screen rotation\n @param[out] mtx Output matrix\n @param[in] fovy Vertical field of view in radians\n @param[in] aspect Aspect ration of projection plane (width/height)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_Persp\n @sa Mtx_PerspStereo\n @sa Mtx_PerspStereoTilt"]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] fovy Vertical field of view in radians"]
#[doc = " @param[in] aspect Aspect ration of projection plane (width/height)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_Persp"]
#[doc = " @sa Mtx_PerspStereo"]
#[doc = " @sa Mtx_PerspStereoTilt"]
pub fn Mtx_PerspTilt( pub fn Mtx_PerspTilt(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
fovy: f32, fovy: f32,
@ -349,19 +252,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Stereo perspective projection, tilted to account for the 3DS screen rotation"] #[doc = " @brief Stereo perspective projection, tilted to account for the 3DS screen rotation\n @note See the notes for @ref Mtx_PerspStereo\n @param[out] mtx Output matrix\n @param[in] fovy Vertical field of view in radians\n @param[in] aspect Aspect ration of projection plane (width/height)\n @param[in] near Near clip plane (Z=near)\n @param[in] far Far clip plane (Z=far)\n @param[in] iod Interocular distance\n @param[in] screen Focal length\n @param[in] isLeftHanded Whether to build a LH projection\n @sa Mtx_Persp\n @sa Mtx_PerspTilt\n @sa Mtx_PerspStereo"]
#[doc = " @note See the notes for @ref Mtx_PerspStereo"]
#[doc = " @param[out] mtx Output matrix"]
#[doc = " @param[in] fovy Vertical field of view in radians"]
#[doc = " @param[in] aspect Aspect ration of projection plane (width/height)"]
#[doc = " @param[in] near Near clip plane (Z=near)"]
#[doc = " @param[in] far Far clip plane (Z=far)"]
#[doc = " @param[in] iod Interocular distance"]
#[doc = " @param[in] screen Focal length"]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @sa Mtx_Persp"]
#[doc = " @sa Mtx_PerspTilt"]
#[doc = " @sa Mtx_PerspStereo"]
pub fn Mtx_PerspStereoTilt( pub fn Mtx_PerspStereoTilt(
mtx: *mut C3D_Mtx, mtx: *mut C3D_Mtx,
fovy: f32, fovy: f32,
@ -374,13 +265,7 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Look-At matrix, based on DirectX implementation"] #[doc = " @brief Look-At matrix, based on DirectX implementation\n @note See https://msdn.microsoft.com/en-us/library/windows/desktop/bb205342\n @param[out] out Output matrix.\n @param[in] cameraPosition Position of the intended camera in 3D space.\n @param[in] cameraTarget Position of the intended target the camera is supposed to face in 3D space.\n @param[in] cameraUpVector The vector that points straight up depending on the camera's \"Up\" direction.\n @param[in] isLeftHanded Whether to build a LH projection"]
#[doc = " @note See https://msdn.microsoft.com/en-us/library/windows/desktop/bb205342"]
#[doc = " @param[out] out Output matrix."]
#[doc = " @param[in] cameraPosition Position of the intended camera in 3D space."]
#[doc = " @param[in] cameraTarget Position of the intended target the camera is supposed to face in 3D space."]
#[doc = " @param[in] cameraUpVector The vector that points straight up depending on the camera's \"Up\" direction."]
#[doc = " @param[in] isLeftHanded Whether to build a LH projection"]
pub fn Mtx_LookAt( pub fn Mtx_LookAt(
out: *mut C3D_Mtx, out: *mut C3D_Mtx,
cameraPosition: C3D_FVec, cameraPosition: C3D_FVec,
@ -390,84 +275,43 @@ extern "C" {
); );
} }
extern "C" { extern "C" {
#[doc = " @brief Multiply two Quaternions"] #[doc = " @brief Multiply two Quaternions\n @param[in] lhs Multiplicand\n @param[in] rhs Multiplier\n @return lhs*rhs"]
#[doc = " @param[in] lhs Multiplicand"]
#[doc = " @param[in] rhs Multiplier"]
#[doc = " @return lhs*rhs"]
pub fn Quat_Multiply(lhs: C3D_FQuat, rhs: C3D_FQuat) -> C3D_FQuat; pub fn Quat_Multiply(lhs: C3D_FQuat, rhs: C3D_FQuat) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Raise Quaternion to a power"] #[doc = " @brief Raise Quaternion to a power\n @note If p is 0, this returns the identity Quaternion.\n If p is 1, this returns q.\n @param[in] q Base Quaternion\n @param[in] p Power\n @return q<sup>p</sup>"]
#[doc = " @note If p is 0, this returns the identity Quaternion."]
#[doc = " If p is 1, this returns q."]
#[doc = " @param[in] q Base Quaternion"]
#[doc = " @param[in] p Power"]
#[doc = " @return q<sup>p</sup>"]
pub fn Quat_Pow(q: C3D_FQuat, p: f32) -> C3D_FQuat; pub fn Quat_Pow(q: C3D_FQuat, p: f32) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Cross product of Quaternion and FVec3"] #[doc = " @brief Cross product of Quaternion and FVec3\n @param[in] q Base Quaternion\n @param[in] v Vector to cross\n @return q×v"]
#[doc = " @param[in] q Base Quaternion"]
#[doc = " @param[in] v Vector to cross"]
#[doc = " @return q×v"]
pub fn Quat_CrossFVec3(q: C3D_FQuat, v: C3D_FVec) -> C3D_FVec; pub fn Quat_CrossFVec3(q: C3D_FQuat, v: C3D_FVec) -> C3D_FVec;
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation"] #[doc = " @brief 3D Rotation\n @param[in] q Quaternion to rotate\n @param[in] axis Axis about which to rotate\n @param[in] r Radians to rotate\n @param[in] bRightSide Whether to transform from the right side\n @return Rotated Quaternion"]
#[doc = " @param[in] q Quaternion to rotate"]
#[doc = " @param[in] axis Axis about which to rotate"]
#[doc = " @param[in] r Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @return Rotated Quaternion"]
pub fn Quat_Rotate(q: C3D_FQuat, axis: C3D_FVec, r: f32, bRightSide: bool) -> C3D_FQuat; pub fn Quat_Rotate(q: C3D_FQuat, axis: C3D_FVec, r: f32, bRightSide: bool) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the X axis"] #[doc = " @brief 3D Rotation about the X axis\n @param[in] q Quaternion to rotate\n @param[in] r Radians to rotate\n @param[in] bRightSide Whether to transform from the right side\n @return Rotated Quaternion"]
#[doc = " @param[in] q Quaternion to rotate"]
#[doc = " @param[in] r Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @return Rotated Quaternion"]
pub fn Quat_RotateX(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat; pub fn Quat_RotateX(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the Y axis"] #[doc = " @brief 3D Rotation about the Y axis\n @param[in] q Quaternion to rotate\n @param[in] r Radians to rotate\n @param[in] bRightSide Whether to transform from the right side\n @return Rotated Quaternion"]
#[doc = " @param[in] q Quaternion to rotate"]
#[doc = " @param[in] r Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @return Rotated Quaternion"]
pub fn Quat_RotateY(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat; pub fn Quat_RotateY(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief 3D Rotation about the Z axis"] #[doc = " @brief 3D Rotation about the Z axis\n @param[in] q Quaternion to rotate\n @param[in] r Radians to rotate\n @param[in] bRightSide Whether to transform from the right side\n @return Rotated Quaternion"]
#[doc = " @param[in] q Quaternion to rotate"]
#[doc = " @param[in] r Radians to rotate"]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @return Rotated Quaternion"]
pub fn Quat_RotateZ(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat; pub fn Quat_RotateZ(q: C3D_FQuat, r: f32, bRightSide: bool) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Get Quaternion equivalent to 4x4 matrix"] #[doc = " @brief Get Quaternion equivalent to 4x4 matrix\n @note If the matrix is orthogonal or special orthogonal, where determinant(matrix) = +1.0f, then the matrix can be converted.\n @param[in] m Input Matrix\n @return Generated Quaternion"]
#[doc = " @note If the matrix is orthogonal or special orthogonal, where determinant(matrix) = +1.0f, then the matrix can be converted."]
#[doc = " @param[in] m Input Matrix"]
#[doc = " @return Generated Quaternion"]
pub fn Quat_FromMtx(m: *const C3D_Mtx) -> C3D_FQuat; pub fn Quat_FromMtx(m: *const C3D_Mtx) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Converting Pitch, Yaw, and Roll to Quaternion equivalent"] #[doc = " @brief Converting Pitch, Yaw, and Roll to Quaternion equivalent\n @param[in] pitch The pitch angle in radians.\n @param[in] yaw The yaw angle in radians.\n @param[in] roll The roll angle in radians.\n @param[in] bRightSide Whether to transform from the right side\n @return C3D_FQuat The Quaternion equivalent with the pitch, yaw, and roll (in that order) orientations applied."]
#[doc = " @param[in] pitch The pitch angle in radians."]
#[doc = " @param[in] yaw The yaw angle in radians."]
#[doc = " @param[in] roll The roll angle in radians."]
#[doc = " @param[in] bRightSide Whether to transform from the right side"]
#[doc = " @return C3D_FQuat The Quaternion equivalent with the pitch, yaw, and roll (in that order) orientations applied."]
pub fn Quat_FromPitchYawRoll(pitch: f32, yaw: f32, roll: f32, bRightSide: bool) -> C3D_FQuat; pub fn Quat_FromPitchYawRoll(pitch: f32, yaw: f32, roll: f32, bRightSide: bool) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Quaternion Look-At"] #[doc = " @brief Quaternion Look-At\n @param[in] source C3D_FVec Starting position. Origin of rotation.\n @param[in] target C3D_FVec Target position to orient towards.\n @param[in] forwardVector C3D_FVec The Up vector.\n @param[in] upVector C3D_FVec The Up vector.\n @return Quaternion rotation."]
#[doc = " @param[in] source C3D_FVec Starting position. Origin of rotation."]
#[doc = " @param[in] target C3D_FVec Target position to orient towards."]
#[doc = " @param[in] forwardVector C3D_FVec The Up vector."]
#[doc = " @param[in] upVector C3D_FVec The Up vector."]
#[doc = " @return Quaternion rotation."]
pub fn Quat_LookAt( pub fn Quat_LookAt(
source: C3D_FVec, source: C3D_FVec,
target: C3D_FVec, target: C3D_FVec,
@ -476,10 +320,7 @@ extern "C" {
) -> C3D_FQuat; ) -> C3D_FQuat;
} }
extern "C" { extern "C" {
#[doc = " @brief Quaternion, created from a given axis and angle in radians."] #[doc = " @brief Quaternion, created from a given axis and angle in radians.\n @param[in] axis C3D_FVec The axis to rotate around at.\n @param[in] angle float The angle to rotate. Unit: Radians\n @return Quaternion rotation based on the axis and angle. Axis doesn't have to be orthogonal."]
#[doc = " @param[in] axis C3D_FVec The axis to rotate around at."]
#[doc = " @param[in] angle float The angle to rotate. Unit: Radians"]
#[doc = " @return Quaternion rotation based on the axis and angle. Axis doesn't have to be orthogonal."]
pub fn Quat_FromAxisAngle(axis: C3D_FVec, angle: f32) -> C3D_FQuat; pub fn Quat_FromAxisAngle(axis: C3D_FVec, angle: f32) -> C3D_FQuat;
} }
#[repr(C)] #[repr(C)]
@ -1823,8 +1664,7 @@ extern "C" {
); );
} }
pub type FILE = __FILE; pub type FILE = __FILE;
#[doc = " @brief Subtexture"] #[doc = " @brief Subtexture\n @note If top > bottom, the subtexture is rotated 1/4 revolution counter-clockwise"]
#[doc = " @note If top > bottom, the subtexture is rotated 1/4 revolution counter-clockwise"]
#[repr(C)] #[repr(C)]
#[derive(Debug, Copy, Clone)] #[derive(Debug, Copy, Clone)]
pub struct Tex3DS_SubTexture { pub struct Tex3DS_SubTexture {
@ -1849,13 +1689,7 @@ pub struct Tex3DS_Texture_s {
#[doc = " @brief Texture"] #[doc = " @brief Texture"]
pub type Tex3DS_Texture = *mut Tex3DS_Texture_s; pub type Tex3DS_Texture = *mut Tex3DS_Texture_s;
extern "C" { extern "C" {
#[doc = " @brief Import Tex3DS texture"] #[doc = " @brief Import Tex3DS texture\n @param[in] input Input data\n @param[in] insize Size of the input data\n @param[out] tex citro3d texture\n @param[out] texcube citro3d texcube\n @param[in] vram Whether to store textures in VRAM\n @returns Tex3DS texture"]
#[doc = " @param[in] input Input data"]
#[doc = " @param[in] insize Size of the input data"]
#[doc = " @param[out] tex citro3d texture"]
#[doc = " @param[out] texcube citro3d texcube"]
#[doc = " @param[in] vram Whether to store textures in VRAM"]
#[doc = " @returns Tex3DS texture"]
pub fn Tex3DS_TextureImport( pub fn Tex3DS_TextureImport(
input: *const ::libc::c_void, input: *const ::libc::c_void,
insize: usize, insize: usize,
@ -1865,18 +1699,7 @@ extern "C" {
) -> Tex3DS_Texture; ) -> Tex3DS_Texture;
} }
extern "C" { extern "C" {
#[doc = " @brief Import Tex3DS texture"] #[doc = " @brief Import Tex3DS texture\n\n @description\n For example, use this if you want to import from a large file without\n pulling the entire file into memory.\n\n @param[out] tex citro3d texture\n @param[out] texcube citro3d texcube\n @param[in] vram Whether to store textures in VRAM\n @param[in] callback Data callback\n @param[in] userdata User data passed to callback\n @returns Tex3DS texture"]
#[doc = ""]
#[doc = " @description"]
#[doc = " For example, use this if you want to import from a large file without"]
#[doc = " pulling the entire file into memory."]
#[doc = ""]
#[doc = " @param[out] tex citro3d texture"]
#[doc = " @param[out] texcube citro3d texcube"]
#[doc = " @param[in] vram Whether to store textures in VRAM"]
#[doc = " @param[in] callback Data callback"]
#[doc = " @param[in] userdata User data passed to callback"]
#[doc = " @returns Tex3DS texture"]
pub fn Tex3DS_TextureImportCallback( pub fn Tex3DS_TextureImportCallback(
tex: *mut C3D_Tex, tex: *mut C3D_Tex,
texcube: *mut C3D_TexCube, texcube: *mut C3D_TexCube,
@ -1886,17 +1709,7 @@ extern "C" {
) -> Tex3DS_Texture; ) -> Tex3DS_Texture;
} }
extern "C" { extern "C" {
#[doc = " @brief Import Tex3DS texture"] #[doc = " @brief Import Tex3DS texture\n\n Starts reading at the current file descriptor's offset. The file\n descriptor's position is left at the end of the decoded data. On error, the\n file descriptor's position is indeterminate.\n\n @param[in] fd Open file descriptor\n @param[out] tex citro3d texture\n @param[out] texcube citro3d texcube\n @param[in] vram Whether to store textures in VRAM\n @returns Tex3DS texture"]
#[doc = ""]
#[doc = " Starts reading at the current file descriptor's offset. The file"]
#[doc = " descriptor's position is left at the end of the decoded data. On error, the"]
#[doc = " file descriptor's position is indeterminate."]
#[doc = ""]
#[doc = " @param[in] fd Open file descriptor"]
#[doc = " @param[out] tex citro3d texture"]
#[doc = " @param[out] texcube citro3d texcube"]
#[doc = " @param[in] vram Whether to store textures in VRAM"]
#[doc = " @returns Tex3DS texture"]
pub fn Tex3DS_TextureImportFD( pub fn Tex3DS_TextureImportFD(
fd: ::libc::c_int, fd: ::libc::c_int,
tex: *mut C3D_Tex, tex: *mut C3D_Tex,
@ -1905,17 +1718,7 @@ extern "C" {
) -> Tex3DS_Texture; ) -> Tex3DS_Texture;
} }
extern "C" { extern "C" {
#[doc = " @brief Import Tex3DS texture"] #[doc = " @brief Import Tex3DS texture\n\n Starts reading at the current file stream's offset. The file stream's\n position is left at the end of the decoded data. On error, the file\n stream's position is indeterminate.\n\n @param[in] fp Open file stream\n @param[out] tex citro3d texture\n @param[out] texcube citro3d texcube\n @param[in] vram Whether to store textures in VRAM\n @returns Tex3DS texture"]
#[doc = ""]
#[doc = " Starts reading at the current file stream's offset. The file stream's"]
#[doc = " position is left at the end of the decoded data. On error, the file"]
#[doc = " stream's position is indeterminate."]
#[doc = ""]
#[doc = " @param[in] fp Open file stream"]
#[doc = " @param[out] tex citro3d texture"]
#[doc = " @param[out] texcube citro3d texcube"]
#[doc = " @param[in] vram Whether to store textures in VRAM"]
#[doc = " @returns Tex3DS texture"]
pub fn Tex3DS_TextureImportStdio( pub fn Tex3DS_TextureImportStdio(
fp: *mut FILE, fp: *mut FILE,
tex: *mut C3D_Tex, tex: *mut C3D_Tex,
@ -1924,20 +1727,14 @@ extern "C" {
) -> Tex3DS_Texture; ) -> Tex3DS_Texture;
} }
extern "C" { extern "C" {
#[doc = " @brief Get number of subtextures"] #[doc = " @brief Get number of subtextures\n @param[in] texture Tex3DS texture\n @returns Number of subtextures"]
#[doc = " @param[in] texture Tex3DS texture"]
#[doc = " @returns Number of subtextures"]
pub fn Tex3DS_GetNumSubTextures(texture: Tex3DS_Texture) -> usize; pub fn Tex3DS_GetNumSubTextures(texture: Tex3DS_Texture) -> usize;
} }
extern "C" { extern "C" {
#[doc = " @brief Get subtexture"] #[doc = " @brief Get subtexture\n @param[in] texture Tex3DS texture\n @param[in] index Subtexture index\n @returns Subtexture info"]
#[doc = " @param[in] texture Tex3DS texture"]
#[doc = " @param[in] index Subtexture index"]
#[doc = " @returns Subtexture info"]
pub fn Tex3DS_GetSubTexture(texture: Tex3DS_Texture, index: usize) -> *const Tex3DS_SubTexture; pub fn Tex3DS_GetSubTexture(texture: Tex3DS_Texture, index: usize) -> *const Tex3DS_SubTexture;
} }
extern "C" { extern "C" {
#[doc = " @brief Free Tex3DS texture"] #[doc = " @brief Free Tex3DS texture\n @param[in] texture Tex3DS texture to free"]
#[doc = " @param[in] texture Tex3DS texture to free"]
pub fn Tex3DS_TextureFree(texture: Tex3DS_Texture); pub fn Tex3DS_TextureFree(texture: Tex3DS_Texture);
} }

2
citro3d-sys/src/lib.rs

@ -7,6 +7,7 @@
pub mod base; pub mod base;
pub mod gx; pub mod gx;
pub mod os;
pub mod renderqueue; pub mod renderqueue;
pub mod texenv; pub mod texenv;
pub mod uniforms; pub mod uniforms;
@ -16,6 +17,7 @@ mod bindings;
pub use base::*; pub use base::*;
pub use bindings::*; pub use bindings::*;
pub use gx::*; pub use gx::*;
pub use os::*;
pub use renderqueue::*; pub use renderqueue::*;
pub use texenv::*; pub use texenv::*;
pub use uniforms::*; pub use uniforms::*;

13
citro3d-sys/src/os.rs

@ -0,0 +1,13 @@
// TODO: move this to ctru-sys, maybe?
// would probably be auto-generated via https://github.com/rust3ds/ctru-rs/issues/123
use ctru_sys::{osSharedConfig_s, OS_SHAREDCFG_VADDR};
fn OS_SharedConfig() -> *mut osSharedConfig_s {
OS_SHAREDCFG_VADDR as _
}
/// Gets the state of the 3D slider as a value from 0.0 to 1.0
pub unsafe fn osGet3DSliderState() -> f32 {
(*OS_SharedConfig()).slider_3d
}

203
citro3d/examples/triangle.rs

@ -1,12 +1,16 @@
//! This example demonstrates the most basic usage of `citro3d`: rendering a simple
//! RGB triangle (sometimes called a "Hello triangle") to the 3DS screen.
#![feature(allocator_api)] #![feature(allocator_api)]
use citro3d::attrib::{self};
use citro3d::buffer::{self};
use citro3d::render::{ClearFlags, Target}; use citro3d::render::{ClearFlags, Target};
use citro3d::{include_aligned_bytes, shader}; use citro3d::{include_aligned_bytes, shader};
use citro3d_sys::C3D_Mtx; use citro3d_sys::C3D_Mtx;
use ctru::prelude::*; use ctru::prelude::*;
use ctru::services::gfx::{RawFrameBuffer, Screen, TopScreen3D}; use ctru::services::gfx::{RawFrameBuffer, Screen, TopScreen3D};
use std::f32::consts::PI;
use std::ffi::CStr; use std::ffi::CStr;
use std::mem::MaybeUninit; use std::mem::MaybeUninit;
@ -33,15 +37,15 @@ struct Vertex {
static VERTICES: &[Vertex] = &[ static VERTICES: &[Vertex] = &[
Vertex { Vertex {
pos: Vec3::new(0.0, 0.5, 0.5), pos: Vec3::new(0.0, 0.5, 3.0),
color: Vec3::new(1.0, 0.0, 0.0), color: Vec3::new(1.0, 0.0, 0.0),
}, },
Vertex { Vertex {
pos: Vec3::new(-0.5, -0.5, 0.5), pos: Vec3::new(-0.5, -0.5, 3.0),
color: Vec3::new(0.0, 1.0, 0.0), color: Vec3::new(0.0, 1.0, 0.0),
}, },
Vertex { Vertex {
pos: Vec3::new(0.5, -0.5, 0.5), pos: Vec3::new(0.5, -0.5, 3.0),
color: Vec3::new(0.0, 0.0, 1.0), color: Vec3::new(0.0, 0.0, 1.0),
}, },
]; ];
@ -87,13 +91,10 @@ fn main() {
let mut vbo_data = Vec::with_capacity_in(VERTICES.len(), ctru::linear::LinearAllocator); let mut vbo_data = Vec::with_capacity_in(VERTICES.len(), ctru::linear::LinearAllocator);
vbo_data.extend_from_slice(VERTICES); vbo_data.extend_from_slice(VERTICES);
let (projection_uniform_idx, mut projection) = scene_init(&mut program, &vbo_data); let mut buf_info = buffer::Info::new();
let (attr_info, vbo_idx) = prepare_vbos(&mut buf_info, &vbo_data);
unsafe { citro3d_sys::Mtx_RotateY(&mut projection, -PI / 12.0, true) };
let mut right_eye_projection = projection;
unsafe { citro3d_sys::Mtx_RotateY(&mut right_eye_projection, 2.0 * PI / 12.0, true) };
let projection_uniform_idx = scene_init(&mut program);
while apt.main_loop() { while apt.main_loop() {
hid.scan_input(); hid.scan_input();
@ -109,64 +110,128 @@ fn main() {
let clear_color: u32 = 0x7F_7F_7F_FF; let clear_color: u32 = 0x7F_7F_7F_FF;
target.clear(ClearFlags::ALL, clear_color, 0); target.clear(ClearFlags::ALL, clear_color, 0);
scene_render(projection_uniform_idx.into(), projection);
unsafe {
// Update the uniforms
citro3d_sys::C3D_FVUnifMtx4x4(
ctru_sys::GPU_VERTEX_SHADER,
projection_uniform_idx.into(),
projection,
);
}
instance.set_attr_info(&attr_info);
instance.draw_arrays(buffer::Primitive::Triangles, vbo_idx);
}; };
render_to(&mut top_left_target, &projection); let Projections {
render_to(&mut top_right_target, &right_eye_projection); left,
render_to(&mut bottom_target, &projection); right,
center,
} = calculate_projections();
render_to(&mut top_left_target, &left);
render_to(&mut top_right_target, &right);
render_to(&mut bottom_target, &center);
}); });
} }
} }
fn scene_init(program: &mut shader::Program, vbo_data: &[Vertex]) -> (i8, C3D_Mtx) { // sheeeesh, this sucks to type:
// Load the vertex shader, create a shader program and bind it fn prepare_vbos<'buf, 'info, 'vbo>(
buf_info: &'info mut buffer::Info,
vbo_data: &'vbo [Vertex],
) -> (attrib::Info, buffer::Slice<'buf>)
where
'info: 'buf,
'vbo: 'buf,
{
// Configure attributes for use with the vertex shader
let mut attr_info = attrib::Info::new();
let reg0 = attrib::Register::new(0).unwrap();
let reg1 = attrib::Register::new(1).unwrap();
attr_info
.add_loader(reg0, attrib::Format::Float, 3)
.unwrap();
attr_info
.add_loader(reg1, attrib::Format::Float, 3)
.unwrap();
let buf_idx = buf_info.add(vbo_data, &attr_info).unwrap();
(attr_info, buf_idx)
}
struct Projections {
left: C3D_Mtx,
right: C3D_Mtx,
center: C3D_Mtx,
}
fn calculate_projections() -> Projections {
let mut left_eye = MaybeUninit::uninit();
let mut right_eye = MaybeUninit::uninit();
let mut center = MaybeUninit::uninit();
// TODO: it would be cool to allow playing around with these parameters on
// the fly with D-pad, etc.
let slider_val = unsafe { citro3d_sys::osGet3DSliderState() };
let iod = slider_val / 4.0;
let near = 0.01;
let far = 100.0;
let fovy = 40.0_f32.to_radians();
let screen = 2.0;
unsafe { unsafe {
citro3d_sys::C3D_BindProgram(program.as_raw()); citro3d_sys::Mtx_PerspStereoTilt(
left_eye.as_mut_ptr(),
fovy,
citro3d_sys::C3D_AspectRatioTop as f32,
near,
far,
-iod,
screen,
true,
);
// Get the location of the uniforms citro3d_sys::Mtx_PerspStereoTilt(
let projection_name = CStr::from_bytes_with_nul(b"projection\0").unwrap(); right_eye.as_mut_ptr(),
let projection_uniform_idx = ctru_sys::shaderInstanceGetUniformLocation( fovy,
(*program.as_raw()).vertexShader, citro3d_sys::C3D_AspectRatioTop as f32,
projection_name.as_ptr(), near,
far,
iod,
screen,
true,
); );
// Configure attributes for use with the vertex shader citro3d_sys::Mtx_PerspTilt(
let attr_info = citro3d_sys::C3D_GetAttrInfo(); center.as_mut_ptr(),
citro3d_sys::AttrInfo_Init(attr_info); fovy,
citro3d_sys::AttrInfo_AddLoader(attr_info, 0, ctru_sys::GPU_FLOAT, 3); // v0=position citro3d_sys::C3D_AspectRatioBot as f32,
citro3d_sys::AttrInfo_AddLoader(attr_info, 1, ctru_sys::GPU_FLOAT, 3); // v1=color near,
far,
// Compute the projection matrix true,
let projection = {
let mut projection = MaybeUninit::uninit();
citro3d_sys::Mtx_OrthoTilt(
projection.as_mut_ptr(),
// The 3ds top screen is a 5:3 ratio
-1.66,
1.66,
-1.0,
1.0,
0.0,
1.0,
true,
);
projection.assume_init()
};
// Configure buffers
let buf_info = citro3d_sys::C3D_GetBufInfo();
citro3d_sys::BufInfo_Init(buf_info);
citro3d_sys::BufInfo_Add(
buf_info,
vbo_data.as_ptr().cast(),
std::mem::size_of::<Vertex>()
.try_into()
.expect("size of vec3 fits in u32"),
2, // Each vertex has two attributes
0x10, // v0 = position, v1 = color, in LSB->MSB nibble order
); );
Projections {
left: left_eye.assume_init(),
right: right_eye.assume_init(),
center: center.assume_init(),
}
}
}
fn scene_init(program: &mut shader::Program) -> i8 {
// Load the vertex shader, create a shader program and bind it
unsafe {
citro3d_sys::C3D_BindProgram(program.as_raw());
// Configure the first fragment shading substage to just pass through the vertex color // Configure the first fragment shading substage to just pass through the vertex color
// See https://www.opengl.org/sdk/docs/man2/xhtml/glTexEnv.xml for more insight // See https://www.opengl.org/sdk/docs/man2/xhtml/glTexEnv.xml for more insight
let env = citro3d_sys::C3D_GetTexEnv(0); let env = citro3d_sys::C3D_GetTexEnv(0);
@ -180,27 +245,13 @@ fn scene_init(program: &mut shader::Program, vbo_data: &[Vertex]) -> (i8, C3D_Mt
); );
citro3d_sys::C3D_TexEnvFunc(env, citro3d_sys::C3D_Both, ctru_sys::GPU_REPLACE); citro3d_sys::C3D_TexEnvFunc(env, citro3d_sys::C3D_Both, ctru_sys::GPU_REPLACE);
(projection_uniform_idx, projection) // Get the location of the uniforms
} let projection_name = CStr::from_bytes_with_nul(b"projection\0").unwrap();
} let projection_uniform_idx = ctru_sys::shaderInstanceGetUniformLocation(
(*program.as_raw()).vertexShader,
fn scene_render(projection_uniform_idx: i32, projection: &C3D_Mtx) { projection_name.as_ptr(),
unsafe {
// Update the uniforms
citro3d_sys::C3D_FVUnifMtx4x4(
ctru_sys::GPU_VERTEX_SHADER,
projection_uniform_idx,
projection,
); );
// Draw the VBO projection_uniform_idx
citro3d_sys::C3D_DrawArrays(
ctru_sys::GPU_TRIANGLES,
0,
VERTICES
.len()
.try_into()
.expect("VERTICES.len() fits in i32"),
);
} }
} }

134
citro3d/src/attrib.rs

@ -0,0 +1,134 @@
//! Configure vertex attributes.
//!
//! This module has types and helpers for describing the shape/structure of vertex
//! data to be sent to the GPU.
//!
//! See the [`buffer`](crate::buffer) module to use the vertex data itself.
use std::mem::MaybeUninit;
/// Vertex attribute info. This struct describes how vertex buffers are
/// layed out and used (i.e. the shape of the vertex data).
#[derive(Debug)]
pub struct Info(pub(crate) citro3d_sys::C3D_AttrInfo);
/// A shader input register, usually corresponding to a single vertex attribute
/// (e.g. position or color). These are called `v0`, `v1`, ... `v15` in the
/// [picasso](https://github.com/devkitPro/picasso/blob/master/Manual.md)
/// shader language.
#[derive(Debug, Clone, Copy)]
pub struct Register(libc::c_int);
impl Register {
/// Get a register corresponding to the given index.
///
/// # Errors
///
/// Returns an error for `n >= 16`.
pub fn new(n: u16) -> crate::Result<Self> {
if n < 16 {
Ok(Self(n.into()))
} else {
Err(crate::Error::TooManyAttributes)
}
}
}
/// An attribute index. This is the attribute's actual index in the input buffer,
/// and may correspond to any [`Register`] (or multiple) as input in the shader
/// program.
#[derive(Debug, Clone, Copy)]
pub struct Index(u8);
/// The data format of an attribute.
#[repr(u32)]
#[derive(Debug, Clone, Copy)]
pub enum Format {
/// A signed byte, i.e. [`i8`].
Byte = ctru_sys::GPU_BYTE,
/// An unsigned byte, i.e. [`u8`].
UnsignedByte = ctru_sys::GPU_UNSIGNED_BYTE,
/// A float, i.e. [`f32`].
Float = ctru_sys::GPU_FLOAT,
/// A short integer, i.e. [`i16`].
Short = ctru_sys::GPU_SHORT,
}
// SAFETY: the RWLock ensures unique access when mutating the global struct, and
// we trust citro3d to Do The Right Thing™ and not mutate it otherwise.
unsafe impl Sync for Info {}
unsafe impl Send for Info {}
impl Default for Info {
fn default() -> Self {
let mut raw = MaybeUninit::zeroed();
let raw = unsafe {
citro3d_sys::AttrInfo_Init(raw.as_mut_ptr());
raw.assume_init()
};
Self(raw)
}
}
impl Info {
/// Construct a new attribute info structure with no attributes.
pub fn new() -> Self {
Self::default()
}
pub(crate) fn copy_from(raw: *const citro3d_sys::C3D_AttrInfo) -> Option<Self> {
if raw.is_null() {
None
} else {
// This is less efficient than returning a pointer or something, but it's
// safer since we don't know the lifetime of the pointee
Some(Self(unsafe { *raw }))
}
}
/// Add an attribute loader to the attribute info. The resulting attribute index
/// indicates the registration order of the attributes.
///
/// # Parameters
///
/// * `register`: the shader program input register for this attribute.
/// * `format`: the data format of this attribute.
/// * `count`: the number of elements in each attribute (up to 4, corresponding
/// to `xyzw` / `rgba` / `stpq`).
///
/// # Errors
///
/// * If `count > 4`
/// * If this attribute info already has the maximum number of attributes.
pub fn add_loader(
&mut self,
register: Register,
format: Format,
count: u8,
) -> crate::Result<Index> {
if count > 4 {
return Err(crate::Error::InvalidSize);
}
// SAFETY: the &mut self.0 reference is only used to access fields in
// the attribute info, not stored somewhere for later use
let ret = unsafe {
citro3d_sys::AttrInfo_AddLoader(&mut self.0, register.0, format as u32, count.into())
};
let Ok(idx) = ret.try_into() else {
return Err(crate::Error::TooManyAttributes)
};
Ok(Index(idx))
}
pub(crate) fn permutation(&self) -> u64 {
self.0.permutation
}
/// Get the number of registered attributes.
pub fn attr_count(&self) -> libc::c_int {
self.0.attrCount
}
}

140
citro3d/src/buffer.rs

@ -0,0 +1,140 @@
//! Configure vertex buffer objects to be sent to the GPU for rendering.
//!
//! See the [`attrib`] module for details on how to describe the shape and type
//! of the VBO data.
use std::mem::MaybeUninit;
use crate::attrib;
/// Vertex buffer info. This struct is used to describe the shape of the buffer
/// data to be sent to the GPU for rendering.
#[derive(Debug)]
pub struct Info(pub(crate) citro3d_sys::C3D_BufInfo);
/// A slice of buffer data. This borrows the buffer data and can be thought of
/// as similar to `&[T]` obtained by slicing a `Vec<T>`.
#[derive(Debug, Clone, Copy)]
pub struct Slice<'buf> {
index: libc::c_int,
size: libc::c_int,
buf_info: &'buf Info,
// TODO: should we encapsulate the primitive here too, and require it when the
// slice is registered? Could there ever be a use case to draw different primitives
// using the same backing data???
}
impl Slice<'_> {
/// Get the index into the buffer for this slice.
pub fn index(&self) -> libc::c_int {
self.index
}
/// Get the length of the slice.
#[must_use]
pub fn len(&self) -> libc::c_int {
self.size
}
/// Return whether or not the slice has any elements.
pub fn is_empty(&self) -> bool {
self.len() <= 0
}
/// Get the buffer info this slice is associated with.
pub fn info(&self) -> &Info {
self.buf_info
}
}
/// The geometric primitive to draw (i.e. what shapes the buffer data describes).
#[repr(u32)]
#[derive(Debug, Clone, Copy)]
pub enum Primitive {
/// Draw triangles (3 vertices per triangle).
Triangles = ctru_sys::GPU_TRIANGLES,
/// Draw a triangle strip (each vertex shared by 1-3 triangles).
TriangleStrip = ctru_sys::GPU_TRIANGLE_STRIP,
/// Draw a triangle fan (first vertex shared by all triangles).
TriangleFan = ctru_sys::GPU_TRIANGLE_FAN,
/// Geometry primitive. Can be used for more complex use cases like geometry
/// shaders that output custom primitives.
GeometryPrim = ctru_sys::GPU_GEOMETRY_PRIM,
}
impl Default for Info {
fn default() -> Self {
let mut info = MaybeUninit::zeroed();
let info = unsafe {
citro3d_sys::BufInfo_Init(info.as_mut_ptr());
info.assume_init()
};
Self(info)
}
}
impl Info {
/// Construct buffer info without any registered data.
pub fn new() -> Self {
Self::default()
}
pub(crate) fn copy_from(raw: *const citro3d_sys::C3D_BufInfo) -> Option<Self> {
if raw.is_null() {
None
} else {
// This is less efficient than returning a pointer or something, but it's
// safer since we don't know the lifetime of the pointee
Some(Self(unsafe { *raw }))
}
}
/// Register vertex buffer object data. The resulting [`Slice`] will have its
/// lifetime tied to both this [`Info`] and the passed-in VBO. `vbo_data` is
/// assumed to use one `T` per drawn primitive, and its layout is assumed to
/// match the given `attrib_info`
///
/// # Errors
///
/// Registering VBO data may fail:
///
/// * if `vbo_data` is not allocated with the [`ctru::linear`] allocator
/// * if the maximum number (12) of VBOs are already registered
///
pub fn add<'this, 'vbo, 'idx, T>(
&'this mut self,
vbo_data: &'vbo [T],
attrib_info: &attrib::Info,
) -> crate::Result<Slice<'idx>>
where
'this: 'idx,
'vbo: 'idx,
{
let stride = std::mem::size_of::<T>().try_into()?;
// SAFETY: the lifetime of the VBO data is encapsulated in the return value's
// 'vbo lifetime, and the pointer to &mut self.0 is used to access values
// in the BufInfo, not copied to be used later.
let res = unsafe {
citro3d_sys::BufInfo_Add(
&mut self.0,
vbo_data.as_ptr().cast(),
stride,
attrib_info.attr_count(),
attrib_info.permutation(),
)
};
// Error codes from <https://github.com/devkitPro/citro3d/blob/master/source/buffers.c#L11>
match res {
..=-3 => Err(crate::Error::System(res)),
-2 => Err(crate::Error::InvalidMemoryLocation),
-1 => Err(crate::Error::TooManyBuffers),
_ => Ok(Slice {
index: res,
size: vbo_data.len().try_into()?,
buf_info: self,
}),
}
}
}

22
citro3d/src/error.rs

@ -1,20 +1,36 @@
//! General-purpose error and result types returned by public APIs of this crate. //! General-purpose error and result types returned by public APIs of this crate.
use std::num::TryFromIntError; use std::num::TryFromIntError;
use std::sync::TryLockError;
/// The common result type returned by `citro3d` functions. /// The common result type returned by `citro3d` functions.
pub type Result<T> = std::result::Result<T, Error>; pub type Result<T> = std::result::Result<T, Error>;
// TODO probably want a similar type to ctru::Result to make it easier to convert
// nonzero result codes to errors.
/// The common error type that may be returned by `citro3d` functions. /// The common error type that may be returned by `citro3d` functions.
#[non_exhaustive] #[non_exhaustive]
#[derive(Debug)] #[derive(Debug)]
pub enum Error { pub enum Error {
/// C3D error code.
System(libc::c_int),
/// A C3D object or context could not be initialized. /// A C3D object or context could not be initialized.
FailedToInitialize, FailedToInitialize,
/// A size parameter was specified that cannot be converted to the proper type. /// A size parameter was specified that cannot be converted to the proper type.
InvalidSize, InvalidSize,
/// Failed to select the given render target for drawing to. /// Failed to select the given render target for drawing to.
InvalidRenderTarget, InvalidRenderTarget,
/// Indicates that a reference could not be obtained because a lock is already
/// held on the requested object.
LockHeld,
/// Indicates that too many vertex attributes were registered (max 12 supported).
TooManyAttributes,
/// Indicates that too many vertex buffer objects were registered (max 12 supported).
TooManyBuffers,
/// The given memory could not be converted to a physical address for sharing
/// with the GPU. Data should be allocated with [`ctru::linear`].
InvalidMemoryLocation,
} }
impl From<TryFromIntError> for Error { impl From<TryFromIntError> for Error {
@ -22,3 +38,9 @@ impl From<TryFromIntError> for Error {
Self::InvalidSize Self::InvalidSize
} }
} }
impl<T> From<TryLockError<T>> for Error {
fn from(_: TryLockError<T>) -> Self {
Self::LockHeld
}
}

48
citro3d/src/lib.rs

@ -1,10 +1,10 @@
//! Safe Rust bindings to `citro3d`. //! Safe Rust bindings to `citro3d`.
pub mod attrib;
pub mod buffer;
pub mod error; pub mod error;
pub mod render; pub mod render;
pub mod shader; pub mod shader;
pub mod texture;
pub mod vbo;
use citro3d_sys::C3D_FrameDrawOn; use citro3d_sys::C3D_FrameDrawOn;
pub use error::{Error, Result}; pub use error::{Error, Result};
@ -12,6 +12,7 @@ pub use error::{Error, Result};
/// The single instance for using `citro3d`. This is the base type that an application /// The single instance for using `citro3d`. This is the base type that an application
/// should instantiate to use this library. /// should instantiate to use this library.
#[non_exhaustive] #[non_exhaustive]
#[must_use]
#[derive(Debug)] #[derive(Debug)]
pub struct Instance; pub struct Instance;
@ -70,6 +71,49 @@ impl Instance {
citro3d_sys::C3D_FrameEnd(0); citro3d_sys::C3D_FrameEnd(0);
} }
} }
/// Get the buffer info being used, if it exists. Note that the resulting
/// [`buffer::Info`] is copied from the one currently in use.
pub fn buffer_info(&self) -> Option<buffer::Info> {
let raw = unsafe { citro3d_sys::C3D_GetBufInfo() };
buffer::Info::copy_from(raw)
}
/// Set the buffer info to use for any following draw calls.
pub fn set_buffer_info(&mut self, buffer_info: &buffer::Info) {
let raw: *const _ = &buffer_info.0;
// SAFETY: C3D_SetBufInfo actually copies the pointee instead of mutating it.
unsafe { citro3d_sys::C3D_SetBufInfo(raw.cast_mut()) };
}
/// Get the attribute info being used, if it exists. Note that the resulting
/// [`attrib::Info`] is copied from the one currently in use.
pub fn attr_info(&self) -> Option<attrib::Info> {
let raw = unsafe { citro3d_sys::C3D_GetAttrInfo() };
attrib::Info::copy_from(raw)
}
/// Set the attribute info to use for any following draw calls.
pub fn set_attr_info(&mut self, attr_info: &attrib::Info) {
let raw: *const _ = &attr_info.0;
// SAFETY: C3D_SetAttrInfo actually copies the pointee instead of mutating it.
unsafe { citro3d_sys::C3D_SetAttrInfo(raw.cast_mut()) };
}
/// Draw the specified primitivearrays. The
pub fn draw_arrays(&mut self, primitive: buffer::Primitive, index: buffer::Slice) {
self.set_buffer_info(index.info());
// TODO: should we also require the attrib info directly here?
unsafe {
citro3d_sys::C3D_DrawArrays(
primitive as ctru_sys::GPU_Primitive_t,
index.index(),
index.len(),
);
}
}
} }
impl Drop for Instance { impl Drop for Instance {

3
citro3d/src/render.rs

@ -96,8 +96,11 @@ impl<'screen> Target<'screen> {
bitflags::bitflags! { bitflags::bitflags! {
/// Indicate whether color, depth buffer, or both values should be cleared. /// Indicate whether color, depth buffer, or both values should be cleared.
pub struct ClearFlags: u32 { pub struct ClearFlags: u32 {
/// Clear the color of the render target.
const COLOR = citro3d_sys::C3D_CLEAR_COLOR; const COLOR = citro3d_sys::C3D_CLEAR_COLOR;
/// Clear the depth buffer value of the render target.
const DEPTH = citro3d_sys::C3D_CLEAR_DEPTH; const DEPTH = citro3d_sys::C3D_CLEAR_DEPTH;
/// Clear both color and depth buffer values of the render target.
const ALL = citro3d_sys::C3D_CLEAR_ALL; const ALL = citro3d_sys::C3D_CLEAR_ALL;
} }
} }

22
citro3d/src/shader.rs

@ -7,12 +7,15 @@
use std::error::Error; use std::error::Error;
use std::mem::MaybeUninit; use std::mem::MaybeUninit;
// Macros get exported at the crate root, so no reason to document this module.
// It still needs to be `pub` for the helper struct it exports.
#[doc(hidden)]
pub mod macros; pub mod macros;
/// A PICA200 shader program. It may have one or both of: /// A PICA200 shader program. It may have one or both of:
/// ///
/// * A vertex [shader instance](Instance) /// * A vertex shader [`Library`]
/// * A geometry [shader instance](Instance) /// * A geometry shader [`Library`]
/// ///
/// The PICA200 does not support user-programmable fragment shaders. /// The PICA200 does not support user-programmable fragment shaders.
pub struct Program { pub struct Program {
@ -86,7 +89,7 @@ impl Drop for Program {
/// one or more [`Entrypoint`]s, but most commonly has one vertex shader and an /// one or more [`Entrypoint`]s, but most commonly has one vertex shader and an
/// optional geometry shader. /// optional geometry shader.
/// ///
/// This is the result of parsing a shader binary (shbin), and the resulting /// This is the result of parsing a shader binary (`.shbin`), and the resulting
/// [`Entrypoint`]s can be used as part of a [`Program`]. /// [`Entrypoint`]s can be used as part of a [`Program`].
pub struct Library(*mut ctru_sys::DVLB_s); pub struct Library(*mut ctru_sys::DVLB_s);
@ -110,11 +113,19 @@ impl Library {
})) }))
} }
/// Get the number of [`Entrypoint`]s in this shader library.
#[must_use] #[must_use]
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
unsafe { (*self.0).numDVLE as usize } unsafe { (*self.0).numDVLE as usize }
} }
/// Whether the library has any [`Entrypoint`]s or not.
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Get the [`Entrypoint`] at the given index, if present.
#[must_use] #[must_use]
pub fn get(&self, index: usize) -> Option<Entrypoint> { pub fn get(&self, index: usize) -> Option<Entrypoint> {
if index < self.len() { if index < self.len() {
@ -127,11 +138,6 @@ impl Library {
} }
} }
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
fn as_raw(&mut self) -> *mut ctru_sys::DVLB_s { fn as_raw(&mut self) -> *mut ctru_sys::DVLB_s {
self.0 self.0
} }

15
citro3d/src/shader/macros.rs

@ -1,9 +1,4 @@
/// Helper struct to [`include_bytes`] aligned as a specific type. //! Helper macros for working with shader data.
#[repr(C)] // guarantee 'bytes' comes after '_align'
pub struct AlignedAs<Align, Bytes: ?Sized> {
pub _align: [Align; 0],
pub bytes: Bytes,
}
/// Helper macro for including a file as bytes that are correctly aligned for /// Helper macro for including a file as bytes that are correctly aligned for
/// use as a [`Library`](super::Library). /// use as a [`Library`](super::Library).
@ -22,3 +17,11 @@ macro_rules! include_aligned_bytes {
&ALIGNED.bytes &ALIGNED.bytes
}}; }};
} }
/// Helper struct to [`include_bytes`] aligned as a specific type.
#[repr(C)] // guarantee 'bytes' comes after '_align'
#[doc(hidden)]
pub struct AlignedAs<Align, Bytes: ?Sized> {
pub _align: [Align; 0],
pub bytes: Bytes,
}

1
citro3d/src/texture.rs

@ -1 +0,0 @@

1
citro3d/src/vbo.rs

@ -1 +0,0 @@
Loading…
Cancel
Save